Яков Перельман - Знаете ли вы физику?
- Название:Знаете ли вы физику?
- Автор:
- Жанр:
- Издательство:АСТ, Астрель, Хранитель
- Год:2007
- Город:Москва
- ISBN:978-5-17-044187-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Перельман - Знаете ли вы физику? краткое содержание
Знаете ли вы физику? - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
35. Трение и смазка
Смазка ослабляет трение средним числом раз в 10.
36. По воздуху и по льду
Можно думать, что так как сопротивление воздуха слабее, чем трение о лед, то тело, летящее через воздух, достигает дальше, чем скользящее по льду. Заключение это неправильно: оно не учитывает того, что сила тяжести пригибает вниз путь брошенного тела, которое вследствие этого и не может быть далеко закинуто. Сделаем расчет, причем ради упрощения выкладок будем считать сопротивление воздуха равным нулю. Оно, впрочем, и действительно крайне ничтожно для тех скоростей, какие можно сообщить телу рукой человека.
Для тел, брошенных в пустоте под углом к горизонту, наибольшая дальность достигается тогда, когда угол равен 45°. При этом, как выводится в курсах механики, дальность бросания определяется формулой:

=, где v – начальная скорость; g – ускорение тяжести. Если же тело скользит по поверхности другого тела (в данном случае лед по льду), то сообщенная ему кинетическая энергия расходуется на преодоление работы силы трения f , равной kmg , где k – коэффициент трения, а mg (произведение массы тела на ускорение тяжести) – вес тела. Работа трения на пути L′ равна
kmgL′ .
Из уравнения

находим величину L′ пробега льдинки

Принимая коэффициент трения льда о лед равным 0,02, имеем

Между тем дальность бросания равна всего , в 25 раз меньше.
Итак, заставив льдинку скользить по льду, мы можем закинуть ее раз в 25 дальше, чем бросив в воздух.
Если принять во внимание, что брошенная льдинка может продолжать двигаться и после падения, то дальность скольжения будет превышать дальность бросания уже не столь значительно; но и в таком случае преимущество на стороне скользящей, а не брошенной льдинки.
37. Падение тела
Падение тела «Тик – так» карманных часов длится не одну секунду, как часто думают, а только 0,4 с. Поэтому путь, проходимый падающим телом в этот промежуток времени, равен

т. е. около 80 см.
38. Затяжной прыжок с парашютом
Противоречие объясняется тем, что падение с нераскрытым парашютом ошибочно принято было за свободное, не замедляемое сопротивлением воздуха. Между тем оно существенно отличается от падения в несопротивляющейся среде.
Попробуем установить, хотя бы приблизительно, подлинную картину падения при затяжном прыжке. Будем пользоваться для расчетов следующей найденной из опыта приближенной формулой для величины f сопротивления воздуха при рассматриваемых условиях:
f = 0,03 v 2кг,
где v – скорость падения в метрах в секунду. Сопротивление, как видим, пропорционально квадрату скорости; а так как парашютист падает с возрастающей скоростью, то наступает момент, когда сила сопротивления делается равной весу тела. С этого момента скорость падения расти больше не будет; падение из ускоренного становится равномерным.
Для парашютиста это наступает тогда, когда его вес (вместе с парашютом) сделается равным 0,03 v 2; принимая вес снаряженного парашютиста в 90 кг, имеем уравнение
0,03 v 2= 90,
откуда v = 55 м/с.
Итак, парашютист падает ускоренно лишь до тех пор, пока не накопит скорости 55 м/с. Это наибольшая скорость, с какою он опускается, в дальнейшем скорость уже не возрастает. Определим – опять приближенно – сколько секунд употребил парашютист для достижения этой максимальной скорости. Примем во внимание, что в самом начале падения, пока скорость мала, сопротивление воздуха ничтожно, и тело падает как свободное, т. е. с ускорением 9,8 м/с. К концу же интервала ускоренного движения, когда устанавливается равномерное падение, ускорение равно нулю. Для нашего приближенного расчета можно допустить, что ускорение в среднем равнялось

Если принять таким образом, что секундная скорость нарастала на 4,9 м в секунду, то она достигает величины 55 м по истечении
55: 4,9 = 11 с.
Путь 5, проходимый телом в 11 секунд такого ускоренного движения, равен

Теперь выясняется подлинная картина падения Евдокимова. Первые 11 с он падал с постепенно уменьшающимся ускорением, пока не накопил скорости 55 м/с, приблизительно на 300-м метре пути. Остальной путь затяжного прыжка он проходил равномерным движением со скоростью 55 м/с. Равномерное движение, согласно нашему приближенному расчету, длилось

а весь затяжной прыжок
11 + 138 = 149 с,
что мало отличается от действительной продолжительности (142 с).
Сделанный нами элементарный расчет надо рассматривать лишь как первое приближение к действительности, так как он основан на ряде упрощающих допущений.
Приведем для сравнения данные, полученные путем опыта: при весе снаряженного парашютиста 82 кг максимальная скорость устанавливается на 12-й секунде, когда парашют опускается на 425–460 м (Забелин, М. Прыжок с парашютом. М., 1933).
39. Куда бросить бутылку?
Так как мы привыкли к тому, что прыгать из движущегося вагона безопаснее вперед по направлению движения, то может казаться, что бутылка ударится о землю слабее, если ее кинуть вперед. Это неверно: вещи надо бросать назад , против движения поезда. Тогда скорость, сообщенная бутылке бросанием, будет отниматься от той, какую бутылка имеет вследствие инерции: в итоге бутылка встретит землю с меньшей скоростью. При бросании вперед произошло бы обратное: скорости сложились бы, и удар получился бы сильнее.
То, что для человека безопаснее все же прыгать вперед, а не назад, объясняется совсем другими причинами: падая вперед, мы меньше расшибаемся, чем при падении назад [10] Всего безопаснее, впрочем, прыгать не вперед, а назад, но лицом вперед. Подробнее об этом см. «Занимательная физика»
.
40. Из вагона
Тело, брошенное с некоторою начальною скоростью, – безразлично, в каком направлении, – подвержено той же силе тяжести, какая увлекает и тело, уроненное без начальной скорости. Ускорение падения для обоих тел одинаково, поэтому они достигнут земли одновременно. Значит, вещь, брошенная из движущегося вагона, достигает земли в такой же промежуток времени, как и брошенная из вагона неподвижного.
Читать дальшеИнтервал:
Закладка: