Дмитрий Миронов - Компьютерная графика в дизайне
- Название:Компьютерная графика в дизайне
- Автор:
- Жанр:
- Издательство:Array Литагент «БХВ»
- Год:2008
- Город:СПб
- ISBN:978-5-9775-0181-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Миронов - Компьютерная графика в дизайне краткое содержание
Для студентов и преподавателей вузов и пользователей, интересующихся компьютерной графикой.
Компьютерная графика в дизайне - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Как правило, работа над графическим проектом завершается экспортом графических файлов в требуемый заказчиком формат и архивацией рабочих версий графического материала в формате графических документов, с которыми работал пользователь. Например, после ретуширования фотографии у выполнявшего его специалиста остается рабочий файл в формате графического редактора, которым он пользовался, а заказчику передается графический файл в формате TIFF, содержащий в себе все, что необходимо для вывода фотографии на печать. В некоторых случаях заказчику передаются и отпечатки.
В заключение раздела кратко сформулируем его основное содержание. В процессе работы над проектом компьютерной графики изображение представляется в виде информационной модели изображения. Реальные графические редакторы работают с информационной моделью не изображения, а графического документа. Графические документы могут создаваться пустыми, формироваться автоматически, считываться из архива или импортироваться. Редактирование графического документа осуществляется средствами графического редактора, доступ к которым обеспечивает интерфейс пользователя. Процедура рендеринга формирует контрольное изображение и выводит графический документ на печать. Графические документы можно сохранять и экспортировать в графические файлы.
1.2.3. Векторная информационная модель
В этом разделе рассматриваются устройство и основные свойства базовой информационной модели векторного изображения, на основе которой разработаны все форматы векторных графических документов.
Крайне упрощая ситуацию, можно принять, что в векторной информационной модели существует только один класс объектов – линии. Каждой линии соответствует дескриптор, в котором хранятся сведения об имени объекта, и значения свойств, однозначно определяющих его расположение, форму и цвет. Меняя значения элементов дескриптора, можно преобразовывать соответствующий ему объект (перемещать, масштабировать, менять цвет). Для каждого типа преобразования объекта имеется соответствующий метод, который должен быть программно реализован в графическом редакторе, работающем с векторной информационной моделью.
Важнейшая особенность векторной информационной модели изображения, очевидная даже для такого, предельно упрощенного ее варианта, – многообразие структур дескрипторов, составляющих ее область данных. В самом деле, для хранения данных о кривых, проходящих через две точки и через десять точек, потребуется различный объем памяти компьютера.
В векторных информационных моделях изображения, использующихся на практике, не один, а много классов графических объектов (см. разд. 2.1.2). Более того, в них имеются составные графические объекты, включающие в себя несколько простых, играющих в составных объектах различные роли. В качестве примера можно привести текст, размещенный на криволинейной траектории. Здесь простыми объектами будут текст и кривая. Каждый из них можно редактировать с помощью методов его класса, но при этом у составного объекта есть и свои методы (например, изменение расстояния между текстом и кривой).
На рис. 1.2.4 представлен простейший векторный рисунок, построенный по известному детскому стишку "Точка, точка, запятая…".

Рис. 1.2.4. Векторное изображение
К сожалению, этот известный всем текст содержит явно недостаточно информации для однозначного воспроизведения изображения, и автору пришлось многое добавлять от себя. В частности, не было никаких указаний о расположении упомянутых графических объектов и об их размерах. Результаты доработки представлены в табл. 1.2.1.

Анализируя данные табл. 1.2.1, составляющие векторную информационную модель изображения, можно сделать несколько выводов о природе этой модели.
• Даже простейшее векторное изображение, как правило, включает в себя графические объекты нескольких классов. Именно из-за этого не удалось обойтись одной общей таблицей – разные классы изображения описываются различными совокупностями параметров (см. разд. 2.1.2–2.1.3).
• Дескрипторам модели соответствуют строки табл. 1.2.1. Каждый из дескрипторов описывает независимый графический объект, которому сопоставлено уникальное имя. Имя объекта может содержать в себе информацию о том, чему соответствует этот объект в реальном или виртуальном мире.
• В каждом дескрипторе кроме имени графического объекта и информации о его классе содержатся значения свойств, конкретизирующие его геометрические свойства – размеры, угол разворота, местоположение. Меняя значение этих свойств, можно изменять изображение, которое будет построено при рендеринге информационной модели.
Примечание
В дескрипторе также содержится информация о цвете объекта, но в данном примере для упрощения соответствующие свойства не были представлены.
Эти выводы будут подробнее рассмотрены в первых разделах главы 2.1. Здесь ограничимся перечислением основных достоинств и недостатков векторной информационной модели. Начнем с достоинств:
• При желании автора, векторное изображение можно структурировать с любой степенью детализации. Произвольному фрагменту изображения можно поставить в соответствие именованный графический объект или именованную связанную группу графических объектов векторной информационной модели. Это дает возможность установить соответствие дескрипторов модели структуре изображаемого объекта, что, в свою очередь, значительно упрощает и ускоряет выделение нужных для работы частей изображения.
• Геометрические преобразования векторных изображений выполняются с помощью простых операций. В процессе масштабирования изображение не искажается, визуальная информация не теряется, артефакты (визуальный шум) не появляются (рис. 1.2.5). Кроме того, ширина линий векторного изображения по желанию может оставаться при масштабировании неизменной (как на рис. 1.2.5) или меняться в соответствии с масштабом.

Рис. 1.2.5. Увеличение размера изображения при работе с векторной информационной моделью
• Векторная модель изображения сравнительно компактна, объем требующейся для ее размещения памяти зависит только от количества графических объектов, входящих в ее состав, но не от размера изображения.
Читать дальшеИнтервал:
Закладка: