Владимир Турчанинов - Технология кровельных и гидроизоляционных материалов
- Название:Технология кровельных и гидроизоляционных материалов
- Автор:
- Жанр:
- Издательство:Литагент БИБКОМ
- Год:2012
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Турчанинов - Технология кровельных и гидроизоляционных материалов краткое содержание
Технология кровельных и гидроизоляционных материалов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Основным же регулятором адгезии является σ г ‒ в , которое находится в прямой зависимости от вязкости и в обратной – от квадрата толщины склеивающей пленки. Повышение вязкости для каждого материала имеет некоторую предельную границу, поскольку сопровождается быстрым ростом периода релаксации, т.е. развитием упруго-хрупких свойств, что может оказаться крайне нежелательным в области отрицательных температур. Со снижением смачиваемости материала уменьшается и адгезия. Смачиваемость повышается со снижением вязкости, поверхностного натяжения, при повышении температуры и вибрационном воздействии.
Оценка адгезионной способности ГИМ проводится на приборах методом сдвига и отрыва. Эти методы условные, т.к. не учитывают релаксацию напряжений, что приводит к завышению показателей адгезии.
При комплексной оценке качества твердых и вязкопластичных ГИМ учитывают также величину когезии, т.е. прочность связи молекул (атомов, ионов) самого ГИМ, что обусловлено межмолекулярным электростатическим взаимодействием и химической связью.
2.2.5 Стандартные методы и приборы для оценки свойств
Для рулонных кровельных и гидроизоляционных материалов определяют полноту пропитки картонной основы вяжущим, разрывную нагрузку при растяжении в продольном и поперечном направлениях, гибкость, массу покровного слоя, прочность сцепления крупнозернистой посыпки с покровным слоем, цветостойкость посыпки.
У мастичных ГИМ – битумных, битумно–резиновых и др. – производят проверку внешнего вида, определение теплостойкости, хрупкости, гибкости, клеящих свойств, деформативности, вязкости, содержания воды и водопоглощения, содержания наполнителя и сухого остатка, биостойкости, уровня токсичности, однородности, плотности, времени отверждения и высыхания, цвета и др.
3 Теоретические положения качества гидроизоляционных материалов
3 . 1 Основные условия надежной гидроизоляции
Высококачественные ГИМ должны отвечать следующим требованиям:
– применяемые для гидроизоляции материалы плохо смачиваются водой;
– исключается возможность свободного перемещения воды по порам и капиллярам изоляционного слоя;
– тормозится диффузное проникновение воды, если нельзя полностью предотвратить диффузию;
– обеспечивается необходимая прочность и деформативность ГИМ;
– сохраняется долговечность материала в конструкции, что адекватно относительной стабильности его структуры.
Таким образом, основным требованием к ГИМ является гидрофобность.
Как ранее отмечалось, ГИМ должен быть гидрофобным, т.е. не смачиваться водой, и тогда водопоглощение, гигроскопичность будут иметь минимальные значения и способствовать повышению долговечности конструкции
Создание не смачиваемой поверхности весьма сложная задача. Способность к смачиванию поверхности характеризуется наличием у нее свободной энергии и зависит от полярности наносимой жидкости. Свободная поверхностная энергия вещества обусловлена наличием на его поверхности некомпенсированных химических связей вследствие ее дефектности.

Рисунок 9 – Схема действия сил поверхностного натяжения на поверхности гидроизоляционного материала
Для ГИМ обычно: 1- вода, 2 – воздух, 3 – изоляционный материал.
Чем меньше разность в избытке свободной энергии соприкасающихся фаз или разность их поверхностных натяжений, тем полнее и легче происходит смачивание. Из условия равновесия сил, действующих на поверхность смачиваемого тела, следует

где σ 23, σ 13, σ 12– поверхностные натяжения на границах раздела соответствующих фаз 1, 2, 3.
Из уравнения видно, что смачиваемость уменьшается с ростом краевого угла смачивания ϕ, который для гидрофобных материалов больше 90°. При этом cosφвеличина отрицательная, а, следовательно, и разность σ 23‒σ 13– величина отрицательная и желательно получение наибольшей ее величины при уменьшение σ 12. Но σ 12(вода-воздух) – величина постоянная и при t=20 °C равна 72,8 эрг/см 2, поэтому необходимо максимально увеличиватьσ13 и уменьшать σ 23. Для понижения σ23 необходимо выбирать материал, обладающий наименьшей полярностью на границе с воздухом.
За меру полярности удобно принимать диэлектрические свойства, например, диэлектрическую проницаемость. Она имеет малые значения для полимеров (от 2,4 до 2,9 для полиизобутилена) и битумов (от 2,5 до 3,0); для воды – 81,0.
Введение в битум минерального порошка с образованием асфальтового вяжущего повышает его диэлектрическую проницаемость (от 4,8 до 6,5). Поскольку замерить σ23 трудно, то основное внимание при разработке ГИМ следует уделять повышению величины σ 13, т.е. избытку свободной энергии на границе гидроизоляции с водой, который увеличивается с понижением полярности ГИМ, т.к. полярность воды постоянная.
С приближениемϕк нулю работа адгезии переходит в работу когезии, равную W k =2σ 12. Таким образом, ГИМ 1 должен хорошо смачивать защищаемую поверхность 2, что характеризуется большим значением cosϕ 1, но плохо смачивается водой 3, что характеризуется малым значением cosϕ 2.
ϕ 1– краевой угол смачивания между фазами 1 и 2;
ϕ 2– краевой угол смачивания между фазами 1 и 3.

Рисунок 10 – Схема действия сил поверхностного натяжения на поверхности гидроизоляционного материала, смачиваемого водой
Таким образом, необходимо сочетать факторы, способствующие понижению σ 23и повышению σ 13, с экспериментальным определением величины углаϕи вычислением обеих значений cosϕ.
Если ГИМ при испытании не дает тупого угла смачивания водой (отрицательного значения cosϕ), то на поверхность конструктивного материала следует нанести тонкий слой пленкообразного гидрофобного вещества. Создание гидрофобной поверхности (наружной и внутри пор) является одним из основных условий хорошей гидроизоляции.
Несмачиваемость поверхности гидроизоляционного слоя – необходимое, но не достаточное условие эффективной защиты конструкции от воздействия воды, т.к. последняя может проникать в материал вследствие капиллярного подсоса. В зависимости от степени гидрофобности стенок капилляра, их способности смачиваться водой изменяется высота или глубина подсоса воды. Если стенки капилляров гидрофобны, то вода в них не заходит, а оказавшаяся в них вода опустится ниже уровня окружающей водной среды.
Читать дальшеИнтервал:
Закладка: