Терри Кватрани - Rational Rose 2000 и UML Визуальное моделирование
- Название:Rational Rose 2000 и UML Визуальное моделирование
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Терри Кватрани - Rational Rose 2000 и UML Визуальное моделирование краткое содержание
Книга «Rational Rose 2000 и UML. Визуальное моделирование» является исчерпывающим руководством по использованию инструмента (Rational Rose 2000), процесса (Rational Unified Process) и языка (UML) для визуального представления, определения, описания и создания программной системы. Здесь изложены основы процесса разработки и дано четкое объяснение каждого этапа и элемента. Автор следует упрощенному варианту методологии Rational Unified Process и описывает процесс разработки от задумки до системного анализа и проектирования. На простом практическом примере, проходящемчерез всю книгу, наглядно демонстрируются итеративный процесс разработки, средства языка UML и возможности среды моделирования Rational Rose. В приложениях рассматриваются вопросы генерации кода и возвратного проектирования в программе Rational Rose 2000 для языков C++, Visual C++ и Visual Basic.
В книге также обсуждаются следующие темы:
— создание функций;
— поиск объектов и классов;
— стереотипы и пакеты в языке UML;
— сценарии и диаграммы взаимодействий;
— способы взаимодействия объектов;
— ассоциативные и агрегационные отношения;
— поведение и структура классов;
— наследование и отношения суперкласс/подкласс;
— поведение объектов и диаграммы переходов и состояний;
— проверка целостности модели;
— определение, представление и описание системной архитектуры;
— итерационный процесс планирования.
Rational Rose 2000 и UML Визуальное моделирование - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Проверка целостности должна быть непрерывной частью всего жизненного цикла разрабатываемой системы.
Лучше всего, когда проверкой целостности занимается отдельная группа сотрудников (пять-шесть человек). В нее должны входить разные специалисты — аналитики, проектировщики, заказчики или их представители, эксперты по предметной области и специалисты по тестированию.
Основной метод проверки целостности — проход по сценариям с наибольшим риском, представленным на диаграммах взаимодействий. Так как каждое сообщение отражает поведение получающего класса, убедитесь в том, что каждое сообщение реализовано в виде операции на диаграмме классов. Проверьте, что два взаимодействующих объекта связаны между собой с помощью ассоциации или агрегации. Внимательно проследите за возвратными отношениями: их легко упустить из виду на этапе анализа. Возвратные отношения требуются, когда различные объекты одного класса взаимодействуют друг с другом в ходе выполнения сценария.
Убедитесь, что каждый класс, представленный на диаграмме классов, участвует хотя бы в одном сценарии. Проверьте, чтобы каждая операция, определенная для класса, была использована, по крайней мере, в одном сценарии или требовалась для завершенности модели. И наконец, проследите, чтобы каждый объект, включенный в диаграмму последовательности действий или диаграмму взаимодействий, принадлежал одному из классов на диаграмме классов.
Для каждого сообщения, изображенного на диаграммах взаимодействий, проверьте, чтобы операция в классе-отправителе отправляла событие, а операция в классе-получателе ожидала событие и могла его обработать. Убедитесь в наличии ассоциативной или агрегационной связи на диаграмме классов между классом-отправителем и классом-получателем. Если такая связь отсутствует, добавьте ее на диаграмму классов. Если для класса уже создана диаграмма состояний и переходов, то событие на ней должно быть представлено для класса-получателя. Необходимо, чтобы диаграмма состояний отражала все события, которые может получать класс.
Каждый класс должен быть описан в документации! Проверьте уникальность имен классов и просмотрите все описания на предмет их полноты. Выясните, что все атрибуты и операции полностью документированы. На заключительном этапе убедитесь в соблюдении всех стандартов, форматов, спецификаций и правил оформления, определенных для проекта.
По мере добавления новых прецедентов и сценариев нужно добиваться однородности модели. Это особенно актуально, когда несколько групп разработчиков проектируют различные части модели. Классы проверяются на предмет необходимости:
□ объединения двух или более классов;
□ разделения класса;
□ исключения класса из модели.
Проверка целостности происходит на протяжении всего жизненного цикла проекта. Она требуется для параллельной разработки нескольких представлений системы и для синхронизации фрагментов системы. Существует три основных способа проверки целостности: проход по сценарию, отслеживание событий и просмотр документации модели.
Глава 11. Проектирование системной архитектуры
На протяжении многих лет я слышала разные определения программной архитектуры: от «программная архитектура — это то, чем занимаются специалисты по программной архитектуре» до «программная архитектура — это политика». Я пришла к выводу, что для программной архитектуры очень трудно подобрать определение. Ее можно представить как набор средств, используемых для указания стратегических решений по структуре и поведению системы, взаимодействию между элементами системы и физическому размещению системы.
«Создание качественного архитектурного базиса необходимо для успешной реализации объектно-ориентированных проектов. Некоторые разработчики пытаются пропустить эту фазу, либо спешат с выпуском продукта, либо не верят в преимущества архитектурных решений. В любом случае результат всегда плачевный — недостаточная проработка этого шага приводит к постепенному распаду проекта» [6] Booch, Grady. Object Solutions. Redwood City, CA: Addison-Wesley, 1995.
.
Развитие архитектуры — достаточно сложный вопрос. Архитектура системы развивается итеративно на стадии проработки. «Архитектура системы не возникает сразу. Она требует тщательного изучения прецедентов, создания прототипов для подтверждения основных концепций, создания архитектурного фундамента и других усилий в процессе задумки и проработки» [7] Jacobson, Ivar. The Objector Software Development Process. Draft edition.
. Для проверки корректности решений на этапе проектирования моделируются работоспособные прототипы архитектуры. «Создание чего-то работоспособного очень важно, потому что позволяет группе специалистов проверять проектные предположения на практике» [8] Там же.
3.
В каждом проекте должен участвовать главный специалист по архитектуре, у которого может быть несколько ассистентов. «В обязанности такого специалиста входит определение архитектуры программных продуктов, поддержка целостности архитектуры, оценка технических рисков проекта, определение порядка
выпуска последовательных версии и планирование их содержания, проведение консультаций для групп проектировщиков, разработчиков, сборщиков и тестеров, а также помощь в определении будущей маркетинговой стратегии» [9] Kruchten, Philippe. Software Architecture and Iterative Development. Santa Clara, CA: Rational Software Corporation, April 1994, p. 53.
.
Программная архитектура многомерна — она состоит из нескольких одновременно развивающихся представлений [10] Там же.
(см. рис. 11.1).
Во всех последующих разделах этой главы рассказывается об элементах каждого представления и нотации языка UML для описания архитектурных решений.
Рис. 11.1. Представление архитектуры 4 + 1
Логическое представление (logical view) архитектуры описывает функциональные требования к системе — то, что система должна обеспечивать для обслуживания пользователей. Логическая архитектура отображается на диаграмме классов, содержащей классы и отношения, которые представляют ключевые абстракции разрабатываемой системы.
Большинство нотаций языка UML содержится в самом логическом представлении архитектуры (классы, ассоциации, агрегации, обобщение, пакеты и др.). Оно вводится на фазе проработки при создании классов и пакетов, представляющих основные абстракции предметной области. Постепенно все больше классов и пакетов добавляется в модель для отражения решений, касающихся ключевых механизмов системы. Ключевой механизм — это решение относительно общих стандартов, правил и норм. Выбор ключевых механизмов системы часто называют тактическим проектированием (tactical design). «Плохое тактическое проектирование может уничтожить даже тщательно продуманную архитектуру, поэтому разработчики должны уменьшить этот риск, определив ключевые правила проекта» [11] Solutions. Redwood City, CA: Addison-Wesley, 1995.
. К некоторым ключевым механизмам относятся: язык разработки, хранение данных, удобный пользовательский интерфейс, обработка ошибок, механизмы взаимодействия, распределение и миграция объектов, сетевые средства.
Интервал:
Закладка: