Сергей Суханов - До и после Победы. Перелом. Часть 2
- Название:До и после Победы. Перелом. Часть 2
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2018
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Суханов - До и после Победы. Перелом. Часть 2 краткое содержание
До и после Победы. Перелом. Часть 2 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Так что автоматизация экспериментов и производств пока обходилась жесткими схемами, а настоящие компьютеры применялись в науке, причем, когда у нас пошли операционные усилители, цифровики сразу начали скрещивать свои схемы с аналоговыми, когда цифровая часть отвечала за общий алгоритм и управление ходом вычислений, а аналоговая — непосредственно для расчетов — суммирования, дифференцирования и тому подобного — то есть они были как бы математическими ускорителями, сопроцессорами для центрального процессора. А я еще думал вбрасывать ли им идею с ПЛИСами или подождать, чтобы не сбивать их с пути — в принципе, сейчас в качестве ПЛИС выступали эти аналоговые сопроцессоры, в которых народ реализовывал нужные алгоритмы жестким перекоммутированием проводников, и, так как алгоритмы не требовалось менять часто, то возможности ПЛИС, по крайней мере по этой части, и не будут востребованы, а цифровая часть нормально отрабатывает и на обычном процессоре. Ладно, подождем.
В общем, машины с центральным процессором пока не хотели вписываться в автоматизацию исследований и в технологические процессы — контроллерам оборудования хватало жестких схем. Ну и ладно — все-равно пока их немного, еще не подобрались и до сотни, и большинство работало в науке и проектировании, ну разве что сумели приспособить несколько машин для особо сложных исследовательских стендов. Особенно отлично сочетание измерительных приборов и симбиоза цифровой и аналоговой вычислительной техники работало на исследовательских стендах по управлению сгоранием топлив в быстротекущем газе — начав исследования по напылению металлов, мы от них плавно переходили к принципиально новой технике — десятки датчиков снимали показания перепада давления, температуры, скорости потока, вибраций в зависимости от положения заслонок, количества подаваемого топлива — и затем инженеры ползали по многометровым графикам, выверяя свои математические модели процессов. В циклотронах вот тоже начали приспосабливать эту технику. А так — в основном она применялась для выполнения множества расчетов — научных и конструкторских. Вот и в ИК-технике следующего поколения обошлись стандартными средствами автоматизации, не влезая с сложные системы управления, хотя эта техника даст существенный скачок для ведения боевых действий ночью.
Глава 15
И называлась эта техника — микроканальные фотоумножители. Все-таки те ИК-приборы, что мы использовали до сих пор, были еще несовершенны и уж точно не дотягивали до тех картинок, что я помнил по своему времени. Точнее, как раз картинок они почти что и не давали. Так, наиболее массовым прибором был детектор тепла — одноэлементный прибор, с помощью которого можно было определить, что вот там что-то теплится — а уж что — солдат, танк, пострелявшее орудие или амбразура ДОТа — надо было высматривать глазами. Ну, не совсем глазами, а оптическими и телескопическими приборами, что мы выпускали в массовых количествах. Какую-то картинку давали системы с механическим сканированием, в которых линейка детекторов последовательно ощупывала пространство и выдавало на ЭЛТ набор точек — в этих устройствах были почти те же детекторы, только сделанные немного по-другому, чтобы обеспечить достаточное быстродействие, необходимое для развертки хотя бы десяти кадров в секунду.
Одноэлементные приборы были легкими, но не давали картинки, сканирующие — давали картинку, но были громоздкими. Промежуточное положение между ними занимали электронно-оптические преобразователи. Эти электровакуумные приборы имели фотокатод — напыленную либо осаженную с внутренней поверхности колбы смесь веществ, которые могли эмитировать электроны под воздействием падающего света — сурьма-цезий, окисленное серебро-цезий и т. п. Причем выбитые электроны могут вылетать из каждой точки фотокатода во всех направлениях — как перпендикулярно, так и практически горизонтально поверхности, поэтому их надо фокусировать, чтобы они летели к экрану более-менее параллельно — электролюминисцентному слою, напыленному на другой стороне колбы. Фокусировать можно либо электростатическими, либо магнитными полями, либо обоими сразу. Немцы применяли только первый вариант. При этом четкое изображение все-равно не получишь — так, при расстоянии между электродами в двадцать миллиметров и фокусирующем напряжении десять тысяч вольт диаметр точки изображения будет почти миллиметр. Причем — каждой точки изображения на фотокатоде. Все дело в том, что свет разной длины волны выбивает электроны разной энергии, и так как каждая точка исходного изображения состоит из набора волн разной частоты, то она даст набор электронов с разной энергией, а фокусирующее напряжение рассчитано, скажем, только на какой-то узкий диапазон энергий — вот остальные электроны, не попадающие в этот диапазон, и будут фокусироваться уже не в точку, а в круг. Это помимо упомянутого мною эффекта выбивания электронов под разными углами. И чем больше расстояние между электродами и чем меньше напряжение — тем больше результирующий диаметр круга от каждой точки. В результате "круги" соседних точек накладываются друг на друга, изображение размывается. В принципе, этого достаточно чтобы рассмотреть крупные объекты, расположенные на дальних расстояниях, либо мелкие — на близких.
Вот только компактными такие приборы назвать все-равно нельзя — для создания высоких напряжений требовался мощный источник электричества, сам прибор тоже немаленький, а небольшой коэффициент усиления накладывал дополнительные требования. Да и наши производственные возможности в начале не позволяли создавать ЭОП, а потом твердотельные и вакуумные одноэлементные ИК-детекторы уже достигли достаточного качества и тем более количества, чтобы имело смысл переводить все на ЭОП. Правда, дополнительное закручивание электронов еще и магнитным полем повышало четкость изображения раз в сто, если не в двести — тут уже можно было бы различать более мелкие объекты на больших расстояниях. Магнитное поле закручивало электроны, так что они двигались от каждой точки фотокатода уже не по параболе, а по спирали, хотя это давало S-образные искажения изображения. К тому же подобрать напряженность магнитного поля так, чтобы электроны при очередном витке пересеклись бы с осью, выходящей из точки фотокатода, откуда они были выбиты, было сложновато — напомню, энергия электронов разная. Да и хроматическая аберрация также возникает — все из-за той же разности в энергиях, а следовательно и скоростях электронов.
Ну и все-таки самое главное — низкий коэффициент усиления обычных электронно-оптических преобразователей — где-то сотня, может, полторы. Правда, были идеи создавать многокамерные ЭОП, когда последовательно соединяется несколько колб, и каждый последующий каскад усиливает изображение от люминофора предыдущего каскада — тут усиление получалось уже до миллиона раз. Но такая конструкция сложна в изготовлении, хрупка в эксплуатации, да и достаточно объемна, а кроме того — снова исчезают мелкие детали, так как нечеткость изображения протаскивается через весь тракт, увеличиваясь от каскада к каскаду. В тридцатые эта идея уже была опробована и ее отбросили именно из-за сильного размывания изображения — не смогли создать достаточную фокусировку на каждом из каскадов. У нас тоже с чисто электростатической фокусировкой ничего не получилось, и лишь добавление еще и магнитной как-то улучшило изображение, но это — дополнительное усложнение — народ продолжал ковырять и эту схему, чисто на всякий случай — вдруг выстрелит. Но наши основные усилия были приложены к другой технологии.
Читать дальшеИнтервал:
Закладка: