Сергей Суханов - До и после Победы. Перелом. Часть 1
- Название:До и после Победы. Перелом. Часть 1
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2018
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Суханов - До и после Победы. Перелом. Часть 1 краткое содержание
До и после Победы. Перелом. Часть 1 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Ну, по сверхзвуковым потокам во второй половине сорок второго у нас было уже много специалистов. И появились они в процессе разработки оборудования для напыления металлов. Получив первые работающие схемы еще осенью сорок первого, разработчики не стали останавливаться на достигнутом, а наоборот, стали наращивать свои усилия — как количеством оборудования для исследований так и самими исследователями. И помимо исследований свойств самих напыляемых материалов, важной частью стали исследования истечения горячих газов через сопла — ведь там надо сжигать топливо — керосин, бензин, метан или что-то другое, подавать продукты сгорания в патрубок, где они будут подхватывать распыляемый металл, расплавлять его и затем переносить к поверхности напыления. Так вот на всем этом пути требовалось поддерживать и нужную температуру, и скорость потока, и его постоянство. А это — практически газодинамика в неприкрытом виде. Быстро поняв, что чем выше скорость потока, а, значит, и частиц напыляемого металла, тем плотнее и надежнее получаются напыляемые слои, исследователи начали работать со сверхзвуковыми потоками, благо сопло Лаваля было известно уже не одно десятилетие. Но с режимами, методами регулирования, составами горючей смеси наши работали еще полгода, зато к осени сорок второго, практически через год после начала работ вообще по напыляемым металлам, мы уже использовали аппараты со сверхзвуковым напылением. Помимо более прочных покрытий, мы получили наборы аппаратуры для исследований в термодинамике, а также более двухсот более-менее опытных исследователей. И вот, покорив очередную высоту, эта беспокойная команда стала озираться вокруг — где бы еще приложить свои силы. Ведь идти на фронт мы им запретили — повоевали каждый по паре-тройке месяцев — и хватит. Пусть отдают долги Родине в цехах и лабораториях. И на фронт-то отпускали не сразу всех, а по очереди. А не отпустить было нельзя — ситуация была близка к бунту — "Все воюют, а мы тут в теплых местечках сидим!". Ну, хорошо — повоевали, получили ордена и медали, некоторые даже пролили кровь, а теперь — за работу! Некоторых из этих ученых-милитаристов мы отвлекали на ракетную тематику и ранее, когда надо было разбираться с соплами — как с изучением советских конструкций, так и с разработкой собственных. Поэтому тема лежала фактически на поверхности и, так как проблема создания собственных конструкций встала уже в полный рост, мы, что называется, нашли друг друга. Временно оставив на разработках новых аппаратов напыления лишь небольшую часть, остальные исследователи дружно навалились на ракеты — в управлении скоростными газовыми потоками они съели уже не одну собаку.
Ведь истечение газов не менее важно, чем горение пороха, так как сначала мы контролировали скорость горения только давлением — чем выше давление, тем выше скорость горения. Это объясняется тем, что, во-первых, давление приближает область горения к поверхности шашки, точнее, горение начинается раньше, во-вторых, чем выше давление, тем выше теплообмен, соответственно, тем больше шашка получает тепла и тем интенсивнее ее состав разлагается и испаряется, в свою очередь поддерживая горение.
В замкнутом пространстве, каковым является гильза патрона или снаряда, этот процесс нарастает лавинообразно, и порох сгорает очень быстро, а при некоторых значениях может и сдетонировать. В ракетных же двигателях присутствует сопло, которое выпускает часть газов наружу, за счет чего и создается реактивное движение. Так вот совместной задачей пороховиков и сопловиков и было поддерживать нужное давление в двигателе при нужном расходе газов в реактивной струе. То есть пороховики обеспечивали скорость горения, достаточную для генерации газов, а сопловики обеспечивали расход газов, формируя и реактивную струю, и ограничивая давление в камере. И баланс прихода и расхода газа надо было соблюсти так, чтобы давление не нарастало постоянно, все увеличивая тем самым скорость горения, но и не падало бы, тем самым уменьшая эту скорость.
Так, при давлении в двадцать атмосфер скорость горения — четыре миллиметра в секунду, при ста атмосферах — уже сантиметр, при двухста — полтора. Но это для одной марки пороха. Для другого пороха картина будет выглядеть иначе — при двадцати атмосферах он вообще не будет гореть, а при сорока горит со скоростью сантиметр в секунду, но при двухста его скорость всего четырнадцать миллиметров. То есть марки пороха различались не только калорийностью, но и реакцией на повышение давления — одни повышали скорость резче, другие — мягче. Более резкие хороши для стартовых ракет, а вот для маршевых двигателей надо бы помягче, ведь давление в камере двигателя непостоянно из-за непостоянства характеристик шашек — недостаточно тщательное смешивание или прессовка оставляют в шашке неоднородности, и при достижении их огонь движется то быстрее, то медленнее. Соответственно, давление то растет, то падает. В некоторых пределах, конечно, но все-таки. Соответственно, более резкий порох при том же повышении давления начнет гореть более быстро, чем более мягкий, и полет получится более рваным, это если ракету вообще не разорвет большим давлением.
Но скорость горения в общем-то зависит не столько от давления, сколько от температуры у поверхности шашки, а уж как она поддерживается — другой вопрос. Так, при пятиста градусах горения практически нет, при тысяче оно идет со скоростью три миллиметра в секунду, при тысяче двухста — уже восемь, а при полутора — уже почти два сантиметра. Причем температуру можно поддержать не только давлением, но и введением компонентов, которые будут гореть жарко. С моей подачи в порох начали вводить порошок алюминия, что позволило снизить давление в камере на пять атмосфер, и заодно повысить стабильность горения — нужная температура-то теперь была практически всегда. Но порошок отнимал кислород у клетчатки, поэтому наши стали сыпать в порох еще и селитру. Ну, в принципе она является окислителем в черном порохе, поэтому это было логично. Но в моей памяти всплыло, что в ракетах использовали перхлорат аммония, и я закинул и эту мысль. Оказалось, что он еще лучший окислитель — в его молекуле было на один атом кислорода больше — четыре атома вместо трех, как в калийной селитре. И разлагался он начиная уже со ста пятидесяти градусов, а не с четырехсот, как селитра, то есть стабильность зажигания и горения смеси с участием перхлората была выше. К тому же он при разложении давал только газообразные вещества, в то время как селитра со своим калием давала твердые частицы — то есть повышался еще и выход газа, а ведь именно газ давал реактивную струю. Так мы немного приблизились к смесевому топливу, о котором я либо забыл, либо вообще не знал, а у местных так и вообще без вариантов. Но впервые идея была реализована осенью сорок второго, когда мне продемонстрировали яркое горение обычной смолы с гудроном — наши просто смешали все это с алюминиевым порошком и тем же перхлоратом аммония:
Читать дальшеИнтервал:
Закладка: