Эдвин Эбботт - Флатландия. Сферландия

Тут можно читать онлайн Эдвин Эбботт - Флатландия. Сферландия - бесплатно ознакомительный отрывок. Жанр: Научная Фантастика, издательство Мир, год 1976. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Эдвин Эбботт - Флатландия. Сферландия краткое содержание

Флатландия. Сферландия - описание и краткое содержание, автор Эдвин Эбботт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.
Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.

Флатландия. Сферландия - читать онлайн бесплатно ознакомительный отрывок

Флатландия. Сферландия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвин Эбботт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

II

Математики начали интересоваться понятиями n -мерных геометрий примерно в середине прошлого века. Кэли, Грассман, Риман, Клиффорд и некоторые другие математики стали использовать эти понятия в своих исследованиях. Время от времени другие математики также обращали внимание на различные любопытные факты из многомерной геометрии. Так, первый том American Journal of Mathematics открывается статьей профессора Ньюкома, в которой доказано, что сферу, не не разрывая, можно вывернуть наизнанку в четырехмерном пространстве, а в третьем томе того же журнала профессор Стрингхэм приводит полный список правильных тел в пространстве четырех измерений, соответствующих правильным многогранникам нашего трехмерного пространства. Появились и другие работы, в которых рассматривалась теория вращения четырехмерных тел, их пересечения и проекции в трехмерное пространство. Великий итальянский геометр Веронезе опубликовал обширный труд по геометрии п измерений с теоремами и подробными доказательствами, совсем как в тех учебниках, по которым изучают геометрию в наших школах. Четвертое измерение является первым из высших измерений, и лишь его мы будем рассматривать далее.

Геометрия четырех измерений важна не только математику, она привлекает и представителей других наук. Так, четырехмерная геометрия затрагивает проблемы пространства, которые относятся к компетенции философа. Попытки представить себе наглядно четвертое измерение заставляют нас напрягать наше пространственное воображение, и тем самым четырехмерная геометрия привлекает к себе внимание психологов. Попытки использовать теории гиперпространства для объяснения физических и других явлений делают четырехмерную геометрию предметом изучения физиков и других естествоиспытателей. Кроме того, широкий интерес вызывают многие любопытные формы и отношения, возникающие при изучении четырехмерной геометрии. Например, трехмерные симметричные тела, отличающиеся лишь расположением в пространстве, можно перевести друг в друга, повернув их в четырехмерном пространстве. Не меньший интерес вызывает плоскость, которая служит осью вращения, а также то обстоятельство, что в четырехмерном пространстве две полные плоскости иногда могут иметь лишь одну общую точку. Гибкую сферу в четырехмерном пространстве можно вывернуть наизнанку, не разрывая ее при этом. Для того чтобы извлечь любой предмет из закрытой коробки или запертого помещения, в четырехмерном пространстве вовсе не требуется взламывать стенки или проникать сквозь потолок и пол. Узел на веревке в четырехмерном пространстве можно развязать, не прикасаясь к концам веревки, а цепь разъять на отдельные звенья, не распиливая их на части!

Эти любопытные особенности пространства четырех измерений, хотя они и представляют несомненный интерес, чрезвычайно затрудняют изучение четырехмерной геометрии. Мы не только не в силах представить себе, как может происходить нечто подобное, но и сами факты здесь лежат за пределами нашего разумения. Изучая планиметрию и стереометрию, мы рисуем чертежи и строим модели. Мы постоянно видим сами изучаемые предметы, и поэтому, даже если они сложны, нам нетрудно мысленно представить их себе. Иначе обстоит дело с четырехмерной геометрией: она, как правило, занимается изучением таких предметов, которые никогда не встречались нам на опыте и которые мы даже с трудом сможем представить себе. Каждое утверждение четырехмерной геометрии кажется нам лишенным смысла. Особенно часто такое ощущение охватывает тех, кто впервые приступает к изучению четырехмерной геометрии. Легкость в восприятии ее утверждений, если она вообще достигается, приобретается лишь медленно и ценой постоянных упражнений. Однако в четырехмерной геометрии мы, как правило, сталкиваемся с такими вещами, которые ранее нам никогда не приходилось встречать, и поэтому представить их себе нам необычайно трудно. Пытаясь постичь некий предмет, мы, естественно, стремимся сначала представить его себе в общих чертах, ощутить его. Приступая к изучению четырехмерной геометрии, мы можем лишь запомнить различные отношения и ознакомиться с ними. Возможно, что со временем они, по крайней мере отчасти, смогут сравниться по живости восприятия с понятиями трехмерной геометрии. Не следует, однако, возлагать на это слишком большие надежды, чтобы потом нас не постигло разочарование. Наоборот, если мы с самого начала отдадим себе ясный отчет в том, сколь малого следует здесь ожидать, то такой «реалистический» подход к предмету позволит нам достичь больших успехов и в лучшей степени овладеть им.

Отсюда следует, что понять четырехмерную геометрию отнюдь не легко. Изучать ее можно лишь небольшими порциями, возвращаясь к прочитанному и тщательно обдумывая его. Столь трудный предмет полезно рассматривать с различных точек зрения и изучать в различных изложениях. Поэтому приводимые ниже краткие очерки, принадлежащие перу различных авторов, обладают несколькими преимуществами: они содержат известные повторы, написаны с различных точек зрения, невелики по объему, и их можно выбирать и изучать независимо друг от друга.

Все эти очерки либо не математические, либо написаны в популярной форме. Это обстоятельство не следует упускать из виду. Из сравнения геометрии в пространстве низших размерностей мы извлекаем аналогии для геометрии четырех измерений, и эти аналогии настолько полны, что четырехмерную геометрию можно необычайно подробно изложить, не прибегая к строгой манере рассуждений, принятых в математике. Указанные аналогии служат путеводной нитью даже для математиков, но сама четырехмерная геометрия не зависит от этих аналогий. Как система теорем и доказательств, она возникает из положенных в ее основу аксиом в результате процесса логического рассуждения так же, как возникают геометрии пространств низших размерностей. Если мы хотим убедиться в непротиворечивости четырехмерной геометрии, в ее истинности как математической системы, нам необходимо изучить ее математически. Нематематическое изложение следует воспринимать лишь как описание четырехмерной геометрии, и читатель должен ясно сознавать, что подобное описание предназначено отнюдь не для того, чтобы убедить его хотя бы в возможности построения четырехмерной геометрии. Оно преследует иную цель: показать читателю, что такое четырехмерная геометрия.

Существует другой способ, также позволяющий использовать принцип аналогии. Вообразив себе двумерные существа, обитающие на плоскости и неспособные воспринимать третье измерение, а тем более геометрию трехмерного пространства, мы получим яркое представление о том, как мы сами относимся к четырехмерному пространству и тем или иным понятиям многомерной геометрии. Подобный подход становится еще более интересным, если изложение ведется в форме художественного произведения, повествующего о жизни в двумерном мире. Такое произведение не обязательно должно входить во все детали двумерного существования. Слишком подробное описание жизни в двумерном мире перегрузило бы повествование излишними подробностями, которые отвлекли бы нас от главной цели. Но подобное произведение, написанное так, чтобы искусно ввести нас в некоторые из этих отношений, способно оказать нам огромную помощь в понимании того, как мы сами должны относиться к многомерной геометрии [8] Такая книга написана Ч. Г. Хинтоном. Называется она «Эпизод из жизни Флатландии». Однако гораздо лучше небольшая книжка Э. Э. Эбботта «Флатландия». В ней основное внимание сосредоточено на тех свойствах пространства, объяснение которых входит в намерения автора, и мы ни на миг не упускаем из виду эти свойства. В книге Хинтоиа основное внимание уделено личности и судьбе героев, что отвлекает читателя от геометрических особенностей их двумерного мира. Кроме того, окружность, на которой живут персонажи Хинтона, менее реальна, чем мир «Флатландии», хотя, быть может, она и представляет более прямую аналогию с поверхностью Земли в трехмерном пространстве. .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвин Эбботт читать все книги автора по порядку

Эдвин Эбботт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Флатландия. Сферландия отзывы


Отзывы читателей о книге Флатландия. Сферландия, автор: Эдвин Эбботт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x