Эдвин Эбботт - Флатландия. Сферландия

Тут можно читать онлайн Эдвин Эбботт - Флатландия. Сферландия - бесплатно ознакомительный отрывок. Жанр: Научная Фантастика, издательство Мир, год 1976. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Эдвин Эбботт - Флатландия. Сферландия краткое содержание

Флатландия. Сферландия - описание и краткое содержание, автор Эдвин Эбботт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.
Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.

Флатландия. Сферландия - читать онлайн бесплатно ознакомительный отрывок

Флатландия. Сферландия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвин Эбботт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но оставим опыт и обратимся к рассуждениям по аналогии. Четвертое измерение можно ввести следующим образом. Объем четырехмерного куба равен произведению длины, ширины, высоты и некоторого четвертого измерения. Чтобы вычислить объем четырехмерного прямоугольного параллелепипеда, необходимо произвести четыре линейных измерения, причем каждое в направлении, перпендикулярном трем остальным. Следовательно, четвертое измерение образует прямой угол с каждым из трех направлений, вдоль которых мы измеряем длину, ширину и высоту трехмерного прямоугольного параллелепипеда. Четырехмерный единичный куб должен иметь ребро, совпадающее с отрезком AB, грань совпадающую с квадратом ABCD, и основание, совпадающее с кубом ABCDEFGH. Четырехмерный единичный куб содержит M × M × M × M = M ⁴ точек. Перейти из одной его точки в любую другую можно, двигаясь в четырех фиксированных направлениях, параллельных четырем его ребрам, сходящимся в одной вершине.

Квадрат ABCD (рис. 1) мы получим из отрезка AB, передвинув этот отрезок со всеми его M точками на расстояние, равное 1см в направлении, перпендикулярном единственному измерению отрезка AB. Каждая точка отрезка AB при движении описывает некоторый отрезок, и, таким образом, квадрат ABCD содержит M отрезков, так же как и M ² точек. Куб ABCDEFGH мы получим из квадрата ABCD, сдвинув квадрат ABCD на расстояние, равное 1см, в направлении, перпендикулярном двум измерениям квадрата. При движении M отрезков и M ² точек квадрата опишут соответственно M квадратов и M ² отрезков. Следовательно, куб ABCDEFGH содержит M квадратов, M ² отрезков и M ³ точек. Аналогично четырехмерный единичный куб мы получим из трехмерного куба ABCDEFGH , передвинув этот куб на расстояние, равное 1см, в направлении, перпендикулярном каждому из трех измерений куба, то есть в направлении четвертого измерения. При движении M квадратов, M ² прямых и M ³ точек трехмерного куба ABCDEFGH опишут соответственно M кубов, M ² квадратов и M ³ отрезков. Следовательно, четырехмерный единичный куб содержит M кубов, M ² квадратов, M ³ отрезков и M ⁴ точек. Обратимся теперь к рассмотрению элементов, образующих границы единичных отрезков, квадратов, кубов и четырехмерных кубов. У единичного отрезка AB имеются две граничные точки («вершины»). У единичного квадрата ABCD — четыре вершины, у единичного куба ABCDEFGH — восемь вершин (по четыре от начального и конечного положения производящего квадрата), а у четырехмерного единичного куба — 16 вершин (по восемь вершин от начального и конечного положения производящего куба). Подсчитаем число ребер. У единичного отрезка AB есть лишь одно ребро (сам отрезок AB). У единичного квадрата ABCD — четыре стороны, («ребра»), у единичного куба ABCDEFGH — двенадцать ребер (по четыре ребра от начального и конечного положений производящего квадрата и четыре ребра, описанных четырьмя вершинами производящего квадрата), а у четырехмерного единичного куба тридцать два ребра (по двенадцать ребер от начального и конечного положений производящего куба и восемь ребер, описанных восемью вершинами производящего куба). Подсчитаем теперь число граней. У единичного квадрата ABCD есть лишь одна грань (сам квадрат ABCD). У единичного куба ABCDEFGH имеется шесть граней (по одной грани от начального и конечного положения квадрата ABCD и четыре грани, описанные сторонами производящего квадрата), а у четырехмерного единичного куба имеются двадцать четыре грани (по шесть граней от начального и конечного положений производящего куба и двенадцать граней, описанных ребрами производящего куба). Подсчитаем наконец число граничных кубов. У куба ABCDEFGH есть лишь один граничный куб (сам куб ABCDEFGH), а у четырехмерного единичного куба имеется восемь граничных кубов (по одному кубу от начального и конечного положения производящего куба и шесть кубов, описанных гранями производящего куба).

Рис 2 Рис 3 Предположим что граница квадрата ABCD сделана из проволоки - фото 44
Рис. 2.
Рис 3 Предположим что граница квадрата ABCD сделана из проволоки Перерезав - фото 45
Рис. 3.

Предположим, что граница квадрата ABCD сделана из проволоки. Перерезав проволоку в вершине D, мы сможем развернуть границу квадрата и совместить ее с прямой, на которой лежит отрезок AB. При этом у нас получится одномерная фигура (рис. 2) длиной в четыре единицы. По обе стороны исходного единичного отрезка AB располагаются единичные отрезки DA и BC. Кроме того, к отрезку примыкает еще один единичный отрезок CD . Предположим теперь, что грани куба ABCDEFGH сделаны из тонкой фольги. Разрезав фольгу вдоль ребер EF, GH, HE, AE, BF, CG и DH , мы сможем развернуть поверхность куба на плоскость и получим двумерную фигуру, составленную из шести квадратов. К квадрату ABCD с каждой стороны примыкают единичные квадраты. Кроме того, к одному из таких квадратов примыкает еще один единичный квадрат FEGH (рис. 3). Аналогично если предположить, что кубы, ограничивающие четырехмерный единичный куб, сделаны из дерева и мы провели распилы вдоль соответствующих граней, то граничные кубы можно будет развернуть в трехмерную фигуру, составленную из восьми единичных кубов. К каждой грани куба ABCDEFGH примыкает по одному кубу. Кроме того, к свободной грани одного из примыкающих кубов «приклеен» еще один куб (рис. 4). Восемь кубов, образующих трехмерную фигуру, изображенную на рис. 4, составляют границу четырехмерного куба.

Рис 4 Ниже перечислены элементы составляющие единичный отрезок квадрат куб - фото 46
Рис. 4.

Ниже перечислены элементы, составляющие единичный отрезок, квадрат, куб и четырехмерный куб, а также их границы.

Число точек Число отрезков прямых Число квадратов Число кубов
Одномерный отрезок M 1 0 0
Двумерный квадрат M ² M 1 0
Трехмерный куб M ³ M ² M 1
Четырехмерный куб M M ³ M ² M
Число вершин Число ребер Число граней (квадратов) Число трехмерных граней (кубов)
Граница одномерного отрезка 2 1 0 0
Граница двумерного квадрата 4 4 1 0
Граница трехмерного куба 8 12 6 1
Граница четырехмерного куба 16 32 24 8

Приведенные выше рассуждения допускают непосредственное обобщение па случай единичного куба и более высоких размерностей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвин Эбботт читать все книги автора по порядку

Эдвин Эбботт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Флатландия. Сферландия отзывы


Отзывы читателей о книге Флатландия. Сферландия, автор: Эдвин Эбботт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x