Александр Казанцев - Собрание сочинений в трех томах. Том 2. Клокочущая пустота.
- Название:Собрание сочинений в трех томах. Том 2. Клокочущая пустота.
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1989
- Город:Москва
- ISBN:5-08-001356-7, 5-08-001358-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Казанцев - Собрание сочинений в трех томах. Том 2. Клокочущая пустота. краткое содержание
Художник Ю. Г. Макаров.
Оформитель А. Е. Ганнушкин. subtitle
5 0
/i/36/730036/i_001.jpg
empty-line
6
Собрание сочинений в трех томах. Том 2. Клокочущая пустота. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Фантаст-философ, косясь на включенный гостем магнитофон, ответил, что литература есть литература, у которой свои законы вымысла, и он не считает себя больше, чем литератором.
Я ответил, что пишу свои научно-фантастические романы, твердо уверенный в их реалистичности, касаются ли они космических контактов, технических достижений будущего или исторических событий.
Рене Жермен словно ждал этих слов и сразу перешел на Сирано де Бержерака. (Я не говорил нашему французскому гостю, что занят этой романтической фигурой.)
— Знаете ли вы, — спросил меня господин Жермен, — что Сирано описал и электрические лампы, и радиоприемник, и даже телевизор? Может быть, не подозревая о назначении описанных вещей, — добавил он.
О нет! Здесь у меня твердое представление о Сирано де Бержераке, весельчаке, насмешнике и провидце. Смеяться-то он смеялся, однако предвидел будущее для того, чтобы осмеять свою современность (кстати говоря, кое в чем перекликающуюся даже с нашим временем!).
Жан Рене Жермен с гордостью отозвался о французском поэте Эдмоне Ростане, воспевшем в своей знаменитой трагикомедии «Сирано де Бержерак» легендарного героя.
— Впрочем, — заметил он, — Ростан скорее занял для своего романтического персонажа это имя, не претендуя на изображение его точной биографии. А вы? — спросил он меня, уже зная о моей работе.
— Следую примеру вашего классика, господин Жермен. Но вижу своего Сирано де Бержерака не только драчуном с длинным носом, но и философом, писателем, героем своего народа, поэтом, наконец!
— А его загадочные знания?
— Мой роман о Сирано де Бержераке, вернее, два романа о нем потому и являются научно-фантастическими, что допускают фантастическую гипотезу, объясняющую происхождение этих загадочных знаний, впрочем, не более фантастическую, чем предложил сам Сирано, описывая свою встречу с Демонием Сократа.
— С инопланетянином? — живо спросил Жермен. — Значит, вы действительно верите в инопланетян?
— «Которых… видел д'Артаньян», как пошутила наша газета «Комсомольская правда», дав в 1982 году такой заголовок к беседе со мной.
— Как так д'Артаньян? — удивился француз.
— Так ведь д'Артаньян и Сирано были современниками. И кто знает…
— Ах да! — рассмеялся Жан Рене. — Это очень хорошо звучит по-русски. Как это сказать? В рифму… стихи, которые вы сочиняли за Сирано де Бержерака.
— Но которые мог бы сочинять герой романа, каким представил его себе фантаст.
— И вы верите, что Сирано мог общаться с инопланетянином?
— Не верю, а убежден.
И это правда! Однако в остальном образ Сирано отнюдь не документален, принадлежа гипотетическому персонажу фантастического произведения.
1982–1985 гг.
Москва — Переделкино


Примечания
1
√—1 (Корень квадратный из — 1). (Примеч. авт.)
2
М., «Наука», 1978.
3
Из числа ненайденных стихотворений на французском, испанском и латинском языках периода 1625–1659 годов в «переводе» автора этого романа.
4
Теперь говорят «галсами». (Примеч. авт.)
5
Теперь произносят Картезий. (Примеч. авт.)
6
Примечание автора для особо интересующихся. Приведя обе части уравнения к единому знаменателю, имеем: 14 x + 7 x + 12 x + 5 × 84 + 42 x + 4 × 84 = 84 x и 9 x = 9 × 84; x = 84.
7
Арабские источники X–XII веков расходятся с современными представлениями о возрасте пирамид. (Примеч. авт.)
8
Сопоставление современных данных астрономии с размерами египетских пирамид устанавливает, что упомянутые три пирамиды по своим объемам соответствуют массам планет Земля, Венера, Меркурий, высота же пирамиды Хеопса ровно в миллиард раз меньше (какими бы мерами ни пользоваться) среднегодового расстояния Земли от Солнца, причем ни это расстояние, ни массы планет древние астрономы без соответствующих астрономических приборов, казалось бы, измерить не могли. (Примеч. авт.)
9
Величина «π» (Пи) была известна древним египтянам как 22/ 7, выражавшаяся просто в семеричной системе счисления. (Примеч. авт.)
10
Древние связи календарей и преданий со звездой Сириус известны не только у египтян или еще раньше у шумеров, но также и у некоторых африканских племен, в частности, у догонов, как свидетельствуют об этом французские этнографы Марсель Гриель и Жармена Дитерлен в журнале Общества африканистов (Париж, т. XX, 1950) и в монографии «Бледный лис» (т. 1, ч. 1, 1956), сообщившие, что догонам известно, будто Сириус двойная, даже тройная звезда (Сириус A и B, наблюдаемые в современные телескопы, и еще не открытый Сириус C!), кроме того, догоны, не имевшие никаких астрономических приборов, а тем более современных физических аппаратов, имели представление не только о параметрах Сириуса, его орбите и светимости, но и передавали из поколения в поколение посвященным некоторые совпадающие с современными взглядами на строение вещества, происхождение вселенной и подобные этому знания, якобы переданные их предкам людьми, прилетевшими от Сириуса. (Примеч. авт.)
11
Раздвоенный внизу посох напоминает палочки «лозоискателей» древности, указывающих с помощью лоз места для рытья колодцев. Современная наука, используя биотоки мозга, создала «психотронику», позволяющую находить в земных недрах полезные ископаемые. Возможно, египтяне знали «лозоискательство», приписывая его появление богу Тоту. (Примеч. авт.)
12
Легендарные «изумрудные таблицы бога Тота», расшифрованные в наше время, якобы содержат намеки на атомное строение вещества, относительность всяких измерений и другие современные знания. (Примеч. авт.)
13
Решение это таково: если согласно четвертой и пятой строчкам надписи число прожитых Диофантом лет делится и на 12 и на 7, то возраст его будет равен 12 × 7 = 84 (или 168, что исключено). Возможно, надпись и предусматривала составление неопределенного Диофантова уравнения с тремя (а не с семью в определенном уравнении) членами:
x/12 + x/7 = y; x = ((7×12)/19) × y
где « y » теоретически не может быть больше 19, чтобы « x » получился бы величиной целочисленной и реальной для человеческого возраста. Очевидно, в этом и подразумевалась мудрость искусства покойного математика. (Примеч. авт.)
14
Примечание автора для особо интересующихся.
Читать дальшеИнтервал:
Закладка: