Илья Зайцев - Применение квантового туннельного эффекта код
- Название:Применение квантового туннельного эффекта код
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005655547
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Илья Зайцев - Применение квантового туннельного эффекта код краткое содержание
Применение квантового туннельного эффекта код - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Второй относительно проверки энергоэффективности устройства эксперимент проводится с целью определения энергетической эффективности работы аппарата c заданными параметрами горючей газовой смеси. Он проводится в герметичной экспериментальной установке. В камере синтеза устанавливается газоанализатор и датчики температуры.
Первое: концентрация водорода в газовой смеси, заданная управляющими параметрами устройства, составляет менее 10%, смесь пересыщена кислородом. Во-первых, это необходимо для обеспечения полного использования водорода; во-вторых, исключает загрязнение среды газом и нарушение баланса воды в экосистеме; и в-третьих, обеспечивает взрывобезопасность устройства.
Смесь до 10% (об.) водорода в воздухе горит, так как распространение пламени исходя из данных (прим. см. лит. 4) возможно, если инертного газа в смеси содержится менее 95%, исходя из того, что газ – азот. Положительный результат эксперимента дает нам возможность утверждать, что работа устройства с параметрами горючей смеси, соответствующими требованиям взрывобезопасности, энергетически эффективна. Значения концентрационных пределов детонационного взрывного сгорания водорода в смеси с воздухом из разных источников до сих пор разнятся, другое, не менее распространенное значение – 4% (об.) для нижнего предела и 75% (об.) для верхнего предела.
Глава четвертая
Физико-химические процессы в энергетическом устройстве
Физико-химические процессы, участвующие в работе плазменно-химического энергетического устройства и включенные в энергетический баланс установки, следующие.
1. Процесс СВЧ термолиза воды в тонкой пленке 2H 2O2H 2+ O 2, ЭХП (энтальпия химического процесса) = 241,82 КДж/моль * R=2 (далее учитывается снижение энтальпии и, соответственно, энергорасхода, так как есть изменение энергии химических связей воды в процессе взаимодействия плазмы с водяной пленкой, см. 2, 4), процесс эндотермический затратный.
2. Процесс горения водорода в кислороде 2H 2+ O 22H 2O, ЭХП = 241,82 КДж/моль, реакция экзотермическая.
3. Процесс взаимодействия электронной плазмы с водяной пленкой Н 2O + e – каталитический процесс ослабления внутримолекулярных связей. В данном процессе электронная плазма катализатор-восстановитель взаимодействует с водородом воды, так что энергия внутримолекулярных связей в целом уменьшается.
3.1. Взаимодействие электронной плазмы с водородными связями воды Н 2О…Н + e – каталитический процесс, так как атом водорода может образовывать связи с несколькими атомами, и одна из связей невалентная, то есть водородная, вода образует связи с плазменной пленкой, в данном процессе плазма – акцептор протона воды, и далее происходит уменьшение плотности водородных связей в водяной пленке, процесс экзотермический, вектор процесса направлен к плазменному восстановлению водорода, находящегося в молекуле воды, до Н 2.
Физико-химические процессы относительно варианта формирования тонкой пленки жидкости, применяя динамики движущихся, вращаемых объектов, поверхностей. Рассмотрим данные процессы более подробно. Первый процесс – термолиз воды (примеры процессов термолиза см. лит. 4), тонкой пленки жидкости, параметры объекта: толщина и движение пленки в пространстве-времени, массообмен – соответствуют необходимым критериям, так как мы управляем динамикой вращения поверхности твердого тела.
Управляющие параметры, позволяющие иметь пленку жидкости необходимой толщины, скорость вращения вала привода двигателя, соответственно, рабочего тела эмиттера, его поверхности и параметр массообмена, объем воды в единицу времени, подающейся, применяя штуцер, на вращаемую поверхность.
Термолиз водяной пленки, катализируемой холодной плазмой, равномерно распределенной по поверхности эмиттера, осуществляется следующим образом. Так как молекула воды, состоящая из более электроотрицательного атома кислорода и двух атомов водорода, – электрический диполь, первое, происходит ориентация молекул в пленке относительно равномерно распределенного по поверхности эмиттера электрического заряда плазмы, далее имеет место взаимодействие электронного газа с химическими связями воды, внутримолекулярными и водородными.
Воздействие плазмы на молекулы жидкости соответствует взаимодействию щелочных металлов, электронных облаков атомов с водой, то есть до взаимодействия ионов щелочного металла с жидкостью.
Более электроотрицательная часть молекулы воды – кислород – взаимодействует с плазмой, притягивает электроны, заряд атома в молекуле компенсируется свободными электронами плазмы, и, соответственно, внутримолекулярные связи ослабевают, так что трата энергии на СВЧ термолиз (пример СВЧ термолиза воды см. лит. 9), осуществляемый воздействием внешнего источника электромагнитного поля на химические связи жидкости, меньше по сравнению с расходом энергии на термолиз пленки, не катализируемый плазмой. Второе: снижается температура лизиса воды, и, соответственно, термическая нагрузка на эмиттер уменьшается. Далее газовая смесь, образовавшаяся в результате разложения воды, состоящая из водорода, кислорода, поступает в камеру сгорания, где водород окисляется кислородом с выделением тепловой энергии.
Процесс взаимодействия электронного газа, плазмы, находящейся на поверхности туннельного эмиттера с молекулами воды, следующий.
Свободные электроны плазмы взаимодействуют с трехатомной молекулой, входя в систему со стороны атомов водорода к более электроотрицательному атому кислорода. Так как электроны свободные, то есть не связанные с ядрами атомов, то они способны конкурировать с электронами атомов водорода, не локализованными по молекулярным орбиталям к кислороду, за связь с ядром кислорода.
Таким образом, процесс трехступенчатый: ориентация диполя молекулы к заряду, продвижение ко входу в электромагнитную систему молекулы со стороны водорода и конкуренция свободных электронов за связь, так что энергия связей уменьшается и возможен процесс отделения, восстановления водорода свободным электроном плазмы и образование свободного атома водорода и гидроксильной группы, то есть под действием свободных электронов плазмы вода в прилегающем к плазменному слою, в зависимости от энергии туннелировавших электронов, изменяет свой характер на щелочной.
Процесс в целом рассмотрим элементарный, относительно возможности проведения в нем процесса туннельной эмиссии, объем кристалла арсенида галлия. Физико-химическая структура кристалла такова, что арсенид галлия содержит в ней энергетические уровни, электронные оболочки, общие для кристалла в целом, то есть надмолекулярные электронные формации. Далее именно от данных общих для всего кристалла электронных уровней происходит такой отрыв электрона, что энергии на данный процесс затрачивается существенно меньше, чем на какой-либо другой, то есть выход и образование свободных электронов в процессе низкотратного преодоления квантовыми частицами энергетического барьера.
Читать дальшеИнтервал:
Закладка: