Илья Зайцев - Применение квантового туннельного эффекта код

Тут можно читать онлайн Илья Зайцев - Применение квантового туннельного эффекта код - бесплатно ознакомительный отрывок. Жанр: Научная Фантастика. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Применение квантового туннельного эффекта код
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005655547
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Илья Зайцев - Применение квантового туннельного эффекта код краткое содержание

Применение квантового туннельного эффекта код - описание и краткое содержание, автор Илья Зайцев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В научно-фантастической книге «Применение квантового туннельного эффекта код» рассматривается энергетическое устройство исследовательского аппарата на основе квантового эффекта в полупроводниках, применение в устройстве физико-химического процесса туннельного каталитического лизиса, свойства квантового уровня материальных объектов туннельного эффекта.

Применение квантового туннельного эффекта код - читать онлайн бесплатно ознакомительный отрывок

Применение квантового туннельного эффекта код - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Илья Зайцев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Энергетическая трата существенно меньше, так как система электронных уровней, энергетические оболочки кристалла, обладают параметрами, отличающимися от соответствующих характеристик молекулярных орбиталей.

Дополнительная трата на данный процесс – это энерготрата на усиление и стимулирование выхода электронов, туннельной эмиссии на поверхность внешним электромагнитным полем, то есть энерготрата, часть суммарной траты на работу антенны излучения СВЧ. Электромагнитное поле данного устройства воздействует на поверхность эмиттера плазмы и на рассмотренный ниже процесс.

Далее на поверхность кристалла эмиттера, покрытого пленкой плазмы, то есть на поверхности твердого тела есть распределенный отрицательный заряд, поступает жидкость, распределяемая по ней центробежными и молекулярными силами в виде тонкой пленки.

Необходимая для эффективного, то есть энергетически выгодного процесса лизиса расчетная толщина пленки жидкости определяется, первое, исходя из физическо-химических свойств полупроводника. Максимального объема плазмы, генерируемого кристаллом минимально возможных размеров, определенный объем, заряд в кулонах, способен катализировать определенное количество находящейся в пленке жидкости. Что, в свою очередь, определяется квантовой физико-химической структурой кристалла полупроводника и такой толщиной слоя воды, что жидкость реагирует полностью с объемом выделяющейся плазмы так, что химические связи воды ослабевают настолько, что вероятно, что процесс в целом экзотермичен, то есть толщина пленки определяется экспериментально.

Источник внешнего электромагнитного поля, антенна излучения, воздействует на пленку воды заданной толщины, и в процессе взаимодействия поля с ослабленными плазмой внутримолекулярными и водородными связями химические связи молекул в пленке разрываются, вода разлагается на составляющие – водород и воду. Вырожденная плазма, электронный газ, распределенный по поверхности экрана-эмиттера, есть катализатор, в процессах на уровне химических реакций не расходуется, и исходя из этого подпитка необходима для возмещения уноса плазмы газами.

Далее, для исключения из процесса энергетических потерь частота подпитки по расположению максимумов противоположна частоте подачи внешнего переменного импульса от СВЧ-источника, и подпитка в общей цепи взаимосвязанных событий в устройстве в пространстве-времени есть первый акт. Делаем следующий вывод: восстановителем связей воды в данном энергетическом устройстве является полупроводник, в кристалле арсенида галлия есть энергетические уровни, с которых электроны способны туннелировать с выходом на поверхность, процесс туннельной эмиссии и образования плазмы на поверхности эмиттера.

Процесс возможно стимулировать внешним электромагнитным полем, уменьшая ширину энергетического барьера, подпитку расхода электронов осуществляем, подведя к полупроводнику с внешней стороны, подсоединив к контактам электрическую цепь, находящуюся под переменным электрическим током, противоположным по частотным характеристикам полю антенны излучения максимально для уменьшения нецелевого расхода энергии. Так как арсенид галлия в процессе не расходуется, определяем, что процесс каталитический, плазмохимический каталитический процесс туннельной эмиссией электронов полупроводника на поверхность и далее в тонкую пленку жидкости.

В энергетический баланс устройства включены следующие параметры: для расчета необходимо знать энтальпию реакции лизиса воды, для того чтобы рассчитать количество энергии, затрачиваемой на работу антенны излучения СВЧ, электромагнитного поля, расходуемой на процесс разложения единицы массы воды в пленке на поверхности в единицу времени, далее необходимо рассчитать энергетический выход от камеры сгорания, количество энергии, выделяющейся в процессе горения газовой смеси, состоящей из водорода и кислорода, в расчете учитывается энтальпия химической реакции горения водорода в кислороде.

В расчете массового баланса жидкости скользящей пленки по поверхности воды необходимо учесть зависимости толщины пленки жидкости от скорости и объема подачи воды на эмиттер и скорости вращения вала привода, сцепленного механически с приемной антенной СВЧ поля, далее учитываются вязкость воды и смачиваемость поверхности экрана приемной антенны. Учитывая данные параметры, мы имеем заданную толщину термолизуемой пленки и метод управления жидкостью применяем, управляющие (см. выше) параметры, независимо от положения в пространстве работу устройства.

Далее, рассчитаем зависимость параметров выходящего электромагнитного поля от количества подаваемой на антенну излучения электрической энергии и находим зависимость потенциала электрического поля равномерно распределенной по поверхности эмиттера плазмы, измеряемой в кулонах, от напряженности поля антенны излучения на поверхности антенны приема и расстояния от антенны излучения до поверхности туннельного эмиттера.

Поставим эксперимент: найдем зависимость температуры лизиса воды электромагнитным полем от потенциала холодной электронной плазмы на поверхности эмиттера и управляемой толщины пленки жидкости. Вычислив, исходя из полученных данных, количество энергии, подаваемой на приемную антенну от антенны излучения, снижающее температуру лизиса, и вероятностный результат, что данная величина меньше выхода энергии от реакции окисления в камере сгорания.

Убедившись в данном, мы сможем утверждать, что применение квантовой структуры энергетических уровней кристалла полупроводников, в том числе арсенида галлия, соответственно процесса туннельной эмиссии электронного газа на твердую поверхность и взаимодействия электронов холодной плазмы с тонкой пленкой, скользящей по поверхности эмиттера, то есть катализ холодной плазмой лизиса жидкости в пленке дает нам экзотермический выход от процесса термолизиса воды с последующим горением компонентов. То есть применение (см. выше) физических свойств квантового уровня материальных объектов и взаимодействие данных свойств с химическим уровнем материи позволяет наряду с физическими свойствами ядер атомов, реакции термоядерного синтеза, дает нам метод применения низкомолекулярных неорганических соединений, воды, в качестве источника энергии, топлива.

Данная величина, а именно рассмотренная энергетическая трата, в расчете есть в сумме с необходимой затратой электрической энергии на подпитку баланса электронного газа в системе, так как плазма диффундирует и далее уносится газами, не возобновляется необходимо доставить электроны (лептоны) в систему, применяя контакт находящегося под током проводника с полупроводником эмиттера, количество затрачиваемой энергии на подпитку плазмы находится экспериментально.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Илья Зайцев читать все книги автора по порядку

Илья Зайцев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Применение квантового туннельного эффекта код отзывы


Отзывы читателей о книге Применение квантового туннельного эффекта код, автор: Илья Зайцев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x