Геннадий Салтанов - Газотермодинамика новой России
- Название:Газотермодинамика новой России
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2022
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Геннадий Салтанов - Газотермодинамика новой России краткое содержание
Газотермодинамика новой России - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
3.2. Встреча со «странным» аттрактором
Мои первые соприкосновения с аттрактором – этой странной ипостасью непостижимой турбулентности произошли почти 50 лет назад.
Именно тогда я впервые услышал поразившее меня словосочетание «странный аттрактор». (Ассоциативно – слышится и «очарованный странник», и вообще – романтика математики). Пытаюсь выяснить у коллег – что же это такое – и не понимаю. Сейчас в 20-х XXI века, ясно, что это было только самое начало, зарождение новой удивительной науки – теории Хаоса, самоорганизации в неравновесных системах.
1977 год. Очередная школа молодых ученых, в основном – продвинутых мехматовцев. Все молодые (до 40 лет), активные, амбициозные. Будущие знаменитости (например, мои друзья – Роберт Нигматулин – будущий академик, Василий Фомин – тоже будущий академик, Юрий Буевич – будущий профессор Стенфордского университета и др.)
«Гуру» этой школы – (для меня – небожитель) – знаменитый академик А. Самарский. Именно он предвидел радикальное развитие математического моделирования, в том числе и в областях гуманитарных.
Самое удивительное для меня, что именно он как руководитель государственной программы по развитию математического моделирования в отраслях народного хозяйства [16] продвинул и реализовал идею создания системы Главных математиков в ведущих отраслях СССР.
И опять же зигзаги истории – первым Главным математиком в отрасли энергомашиностроения по его предложению был определен Г.А. Салтанов, а ВНИИАМ – головным институтом отрасли по внедрению математического моделирования и САПР в отрасли. Далее, формирование и развитие межотраслевого проекта АН СССР, ВНИИАМ, ВНИИАЭС (еще десятки НИИ, АЭС и заводов) на базе гос. программы «Атомэнергомашэксперт». Руководители – акад. Самарский А.А., Институт прикладной математики РАН (ИПМ), Г.А. Салтанов, д.т.н., профессор, зам. директора – Главный математик ВНИИ Атомного энергомашиностроения СССР. И это спустя 10 лет после школы на Енисее!
3.3. О неслучайных совпадениях
1977 г.События.
• Школа математиков на Енисее. Мое личное знакомство с великим академиком А.А. Самарским, а также со «странным аттрактором»;
• Защита докторской диссертации Салтанова Г.А. по на-правлению «Нестационарные волновые процессы в газодинамике неравновесных двухфазных сред». Главный оппонент и мой защитник – д.т.н. Роберт Нигматулин (будущий академик РАН);
• Илья Пригожин (Бельгийский виконт русского проис-хождения) получает Нобелевскую премию за работы в области термодинамики необратимых и неравновесных процессов и диссипативных систем.
1979 год.Прорывы, формирование направления
• Салтанов Г.А. «Неравновесные и нестационарные про-цессы в газодинамике однофазных и двухфазных сред. М., Наука, 1979г.;
• Николс Г., Пригожин И. «Самоорганизация в неравно-весных системах. От диссипативных структур к упорядоченности через флуктуации». М., Мир, 1979 г.;
• Моисеев Н.Н. «Математика ставит эксперимент». М., Наука, 1979 г.
1979 год.
• Крупнейшая авария на АЭС Три-Майл-Айленд, США.
Моя встреча с доктором Джексоном (Лос-Аламос, США) на международном Конгрессе в Югославии. Джексон в то время главный специалист по анализу и расчетам аварий на АЭС. Триггер моего осознания актуальности и приоритета математического моделирования вычислительного эксперимента при анализе гидродинамических процессов на АЭС.
Вот такое удивительное и вряд ли случайное совпадение встреч, интересов, увлеченностей и направлений. Как будто что-то вызревало и прорвалось.
Итак, для меня лично 1977–1979 годы – момент крутой бифуркации. Ветвление и выбор нового направления «математическое моделирование и вычислительные исследования сложных неравновесных систем».
3.4. Бифуркации и другие полезные понятия
Интересно посмотреть на события турбулентных 90-х годов новой России с позиции неравновесной газотермодинамики, бифуркаций и самоорганизации в неравновесных системах.
Приведем несколько базовых и удивительных характерных терминов неравновесной термогазодинамики и теории Хаоса, которыми произвольно или в качестве речевых оборотов часто пользуются люди как в повседневной жизни, так и при кризисных событиях.
Бифуркация – раздвоение. В теории динамических систем – качественная перестройка системы. В синергетике – это точки неустойчивого равновесия, точки «выбора» дальнейшего развития системы. Предтеча некоего фазового перехода.
Принципы бифуркации удивительно разнообразны: от точки выбора «куда пойти учиться» после школы до выбора принципиально другой системы жизни.
Распад СССР, пожалуй, самая значимая точка бифуркации глобальной неравновесной турбулентной системы мира. В синергетике и теории Хаоса точка бифуркации представлена как критическое состояние системы, при котором система становится неустойчивой относительно флуктуаций. Возникает неопределенность: станет ли состояние хаотичным или система перейдет на новый, более дифференцированный и высокий уровень упорядоченности.
Флуктуации . В точке бифуркации большое значение имеют флуктуации, когда их случайное «вторжение» в неравновесную систему может резко нарушить баланс метастабильности.
В неравновесной газодинамике роль флуктуации проявляется наиболее ярко в процессах спонтанной конденсации перенасыщенности пара. [14]
Теория флуктуации (Д. Гиббс), их экспоненциального роста, расчета скорости образования центров конденсации, разработанные Френкелем и Зельдовичем, активно использованы в работах автора.
Диссипативные структуры .
Одно из основных понятий теории самоорганизации. Диссипативная структура – это открытая динамическая система, оперирующая вдали от термодинамического равновесия и связанная с рассеянием (диссипацией) энергии, вещества или информации.
По И. Пригожину – «динамические системы образуются как энергетически более экономные, выгодные образования в сильно неравновесных системах, условиях. При этом производство энтропии (неупорядоченности) и диссипация (рассеяние) энергии – минимальное.
Образование новых типов структур указывается на переход от хаоса и беспорядка к организации и порядку . Эти диссипативные динамические микроструктуры являются прообразами будущих состояний системы, так называемых фракталов.
3.5. Фракталы и аттракторы
И опять – математическое моделирование.
Фрактал – математическое множество, обладающее свойством самоподобия. Фрактальное моделирование, на основе развития компьютерных технологий – ключ к эффективной визуализации этих структур, их исследования, анализа и использования. Классический образец визуализированного фрактала – Множество Мандельброта (Рис. 3-1).
Читать дальшеИнтервал:
Закладка: