Михаил Лушнов - Медицинские информационные системы: многомерный анализ медицинских и экологических данных
- Название:Медицинские информационные системы: многомерный анализ медицинских и экологических данных
- Автор:
- Жанр:
- Издательство:Array Литагент «Геликон»
- Год:2013
- Город:Санкт-Петербург
- ISBN:978-5-93682-888-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Лушнов - Медицинские информационные системы: многомерный анализ медицинских и экологических данных краткое содержание
Медицинские информационные системы: многомерный анализ медицинских и экологических данных - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ниже, на рис. 2.1. и 2.2., приводятся 2 примера спектра-графика, близких по типу к 1/ f для космического и биологического параметра. Спектральные плотности вычислены с применением спектрального окна Парзена. Кратко суть процедуры сводится к тому, что квантуется (дискретизируется) любой физический или биологический процесс так, что он представляет собой данные X t, t = 1, 2, …, N , отсчитанные через промежутки времени d . Далее вычисляется сглаженная выборочная оценка нормированной спектральной плотности по специальным формулам (Бокс Дж., Дженкинс Г., 1974).

Рис. 2.1. 1/ f -подобный спектр и периоды среднемесячных значений ГИКЛ в дни исследования гематологических параметров в период с 1977 по 1988 г. Здесь частота f соответствует около 11-летнему циклу (142 мес.)

Рис. 2.2. Спектр и периоды среднемесячных значений содержания палочкоядерных нейтрофилов в циркулирующей крови в утренние часы в период с 1977 по 1988 г. наглядно демонстрируют, что долгосрочные периоды и спектры совпадают с показателями ГИКЛ и, следовательно, имеют 1/ f – подобные закономерности
Биологический ритм, от клеточного уровня до уровня поведения, в подавляющих случаях подчиняется флуктуациям по закону 1/ f n , где n – ближайшая частота (или ранг частот) устройства. Возможны 3 варианта причин: ионный перенос флуктуаций клеточных мембран, регулирующих ионные потоки в клетке в полуинтервалах, полное управление неврогенной природы или суперпозиция случайных событий. Величины биологических параметров всегда флуктуируют во времени. Существуют доказательства 1/ f -подобных флуктуаций биологических параметров от клеточного до поведенческого уровня. Возможны несколько механизмов генерации 1/ f -подобных биологических ритмических флуктуаций Во-первых, 1/ f -ионные флуктуационные потоки мембран клеток модулируют поток ионов внутрь клеток, которые в свою очередь модулируются изменениями интервалов импульсов клеток и нервов. Исследован новый механизм функциональной регуляции ионной проводимости каналов в зависимости от флуктуации окружающей среды (Bezrukov S. M. et al., 1995; Pustovoit M. A. et al., 1995). Во-вторых, временная задержка и ответы системной нервной регуляции могут быть причиной 1/ f -модуляций, например флуктуации сердечного ритма и кровяного давления (Musha T., Yamamoto M., 1995).
Изучены 1/ f -флуктуации нейронной активности нервной системы во время регистрации быстрых движений глаз кошек в период сна. Этот феномен наблюдался в обширной области мозга, такой как ретикулярная формация, таламус, церебральный кортекс, гиппокамп. Предполагают существование глобальной модулирующей системы в мозге с участием серотониноэргетики и холиноэргетики (Yamamoto M., 1995). Развитие автономной нервной системы плода выглядит так, что большую роль играют 1/ f -и 1/ f 2-спектры сердцебиений плода, варьирующиеся на частотах ниже 0,05 Гц, которые поддерживают отношения парасимпатической и/или симпатической нервных систем и описывают процесс роста и взросления (Shono H. et al., 1995).
Экспериментальные данные указывают на присутствие в спектре интервалов сердцебиений в частотах 10 –4– 10 –5Гц. Каждый интервал сердечных сокращений имеет тенденцию быть некоррелированным с другими наблюдениями в течение 3 – 24 часов. Это может быть причиной 1/ f -спектрального профиля хотя величина спектральной плотности для частот ниже 10 –5Гц не значима; наибольшие значения спектра указывают на ультранизкие частоты, что указывает на включение интервалов сердечных сокращений в общие автокорреляции в течение длительного времени. Авторы приходят к выводу о необходимости проверки таких гипотез в течение многомесячных наблюдений (Yamamoto M. et al., 1995).
В то же время есть указания на внешюю причинность таких вариаций. Изучение динамики сердечного ритма – R-R -интервала человека в зависимости от геофизических и метеорологических условий выявило корреляции индекса централизации и амплитуды респираторной волны кардиоритма с атмосферным давлением и геомагнитной активностью подтверждает такие предположения (Smirnova N. A., Augustinaite E. E., 1995). Исследование статистических свойств сердечного ритма на основе клинических данных о сердечной патологии показало возрастание абсолютной величины 1/ f n у кардиальных больных (Ulbikas J. et al., 1995). В связи с этим корреляции показателей дыхательной и сердечно-сосудистой систем с ионосферными параметрами, приводимые ниже в настоящей работе, выглядят совершенно естественными.
Глава 3
Системно-статистический подход к исследованию биоритмов и ритмов внешней среды
3.1. Системный подход и синергетика
Исследование множества свойств различных явлений привело естествоиспытателей к необходимости системного подхода. Необходимость такого подхода при изучении целостного организма ощущалась исследователями давно. Термин «система» употребляется в том случае, когда подразумевается собранная вместе совокупность, упорядоченная и организованная, без четкого критерия объединения, упорядоченности, организованности. Системный подход исследований – следствие перемены теоретического подхода к пониманию изучаемых объектов (Эшби У. Р., 1969; Анохин П. К., 1973).
В литературе приводится много определений системы. Одно из них звучит так: система – комплекс избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения приобретают характер взаимосодействия компонентов на получение фокусированного полезного результата. Результат функциональной системы является ее неотъемлемой частью (Анохин П. К., 1973). Функциональная система – единица интеграции целого организма, складывающаяся динамически для достижения любой его приспособительной деятельности и всегда на основе циклических взаимоотношений избирательно объединяющая специальные центрально-периферические образования (Анохин П. К., 1980).
Системный подход в медицине и биологии определяется через свойства и признаки самой системы, которые включают в себя: 1) комплекс взаимосвязанных элементов; 2) существование особого единства с окружающей средой; 3) вхождение исследуемой системы в качестве элемента более высокого порядка (органы, ткани, целостный организм); 4) возможность рассмотрения элементов изучаемой системы в качестве системы более низкого порядка (Петленко В. П., Попов А. С., 1978).
Таким образом, в нашем случае интересен вопрос воздействия космогелиогеофизических факторов на внутреннее взаимодействие (самоорганизацию) элементов функциональной биосистемы. В настоящее время проблему самоорганизации стали относить к разделу новой дисциплины – синергетики. Выдающуюся роль в возникновении теории самоорганизации сыграли труды В. И. Вернадского (1975; 1980). Английский кибернетик У. Р. Эшби (1969) опубликовал одним из первых принципы самоорганизующейся динамической системы с определением самоорганизующейся системы. Ранее, в 1954 г., Б. Фэрли и У. Кларк определили ее в качестве «системы, изменяющей свои основные структуры в зависимости от опыта и окружения» (Герович В. А., 1994).
Читать дальшеИнтервал:
Закладка: