Питер Бернстайн - Против богов: Укрощение риска
- Название:Против богов: Укрощение риска
- Автор:
- Жанр:
- Издательство:ЗАО «Олимп-Бизнес»
- Год:2000
- Город:Москва
- ISBN:5-901028-17-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Питер Бернстайн - Против богов: Укрощение риска краткое содержание
Книга снабжена подробной библиографией и указателями. Предназначена как для экономистов, предпринимателей, историков науки, так и для широкого круга читателей.
Против богов: Укрощение риска - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Теория хаоса доводит идею Пуанкаре о всеобщности причинно-следственной связи до ее логического предела, отказываясь от понятия прерывности. То, что кажется прерывным, на самом деле является не резким разрывом с прошлым, а логическим следствием предшествующих событий. В мире хаоса нас всегда подстерегают потрясения.
Из теории хаоса следует еще один вывод. Хорафас утверждает, что «в мире хаоса... точность предсказаний уменьшается с увеличением дистанции во времени». Это оставляет сторонников этой теории в плену деталей, в мире, где все сигналы очень слабы, а остальное всего лишь шум.
Занявшись прогнозированием финансовых рынков, сторонники теории хаоса, сосредоточившись на изменчивости, накопили огромное количество данных о трансакциях, позволяющих им с некоторым успехом предсказывать изменения курса ценных бумаг, валюты и уровня риска на ближайшее будущее [6] [6] См. главным образом: [Hsieh, 1995; Focardi, 1996].
. Они даже открыли, что колеса рулеток дают не совсем случайные результаты. Впрочем, открытые ими закономерности настолько незначительны, что ни один игрок не сможет разбогатеть с помощью этого открытия.
Достижения теории хаоса представляются довольно скромными по сравнению с ее обещаниями. Сторонники этой теории взяли в руки бабочку, но не могут выявить все воздушные потоки, образующиеся от трепыхания ее крыльев. Впрочем, они стараются.
Не так давно появились другие утонченные методы для предсказания будущего со странными названиями вроде генетических алгоритмов и нейронных сетей [7] [7] Интересное описание достижений в этой области см.: [Focardi, 1996, Leinweber, Arnott, 1995]. Пять прекрасных статей по этому вопросу можно найти в «Journal of Investing» за зиму 1995 года.
. Эти методы нацелены главным образом на изучение природы изменчивости; для их использования нужны вычислительные возможности, которых не могут обеспечить самые мощные компьютеры.
Целью генетических алгоритмов является копирование способа, каким гены переходят от одного поколения к другому. Сумевшие выжить гены создают модели, которые формируют наиболее крепкое и жизнеспособное потомство {1} {1} Ал-Хорезми, математик, от имени которого произошло слово «алгоритм», наверняка удивился бы, познакомившись с «потомством», которое через 1200 лет дали его исследования.
. Нейронные сети моделируют работу человеческого мозга, отбирая из запрограммированного экспериментатором опыта те результаты, которые окажутся наиболее полезными в последующем опыте. Сторонники этой процедуры открыли в рамках одной системы шаблоны поведения, которые они могут использовать для предсказания поведения совершенно других систем. Теория утверждает, что все сложные системы, такие, как демократия, технический прогресс и фондовый рынок, характеризуются общими шаблонами и реакциями [8] [8] См.: Can the Complexity Gurus Explain It All // Business Week, 1995, November 6, стр. 22-24.; статья включает обзоры двух книг по данному вопросу.
.
Эти модели проливают яркий свет на сложность реальности, но выявление шаблонов, предшествующих возникновению других шаблонов на финансовых рынках или в результатах запусков рулетки, не доказывает наличия причинно-следственных связей. Сократ и Аристотель отнеслись бы к теории хаоса и теории нейронных сетей столь же скептически, как создатели этих концепций относятся к общепринятым теориям.
Сходство с истиной — это еще не истина. Пытаясь без каких-либо теоретических схем объяснить, как некие шаблоны воспроизводятся во времени или в разных системах, эти новации не очень убеждают в том, что сегодняшние сигналы станут причинами завтрашних событий. Нам остается только туманная последовательность данных, которые поставляются огромной мощью компьютеров. Поэтому средства прогнозирования, основанные на нелинейных моделях и компьютерной гимнастике, стоят перед теми же самыми препятствиями, что и общепринятая теория вероятностей: модель всегда исходит из данных о прошлом.
Прошлое редко предупреждает нас о будущих потрясениях. Войны, этнические чистки, депрессии, финансовые бумы и спады приходят и уходят, однако являются они всегда неожиданно. Но проходит время, и, когда мы изучаем историю происшедшего, истоки потрясений становятся столь очевидными, что мы с трудом понимаем, как участники событий могли не обратить внимания на то, что их ожидало.
В мире финансов неожиданности неизбежны. Например, в конце 1950-х годов инвесторы обнаружили, что изменилось освященное восьмидесятилетним опытом соотношение, и тысяча долларов, вложенная в малорисковые высококачественные облигации, впервые в истории приносит больший доход, чем тысяча долларов, вложенная в рискованные обыкновенные акции {2} {2} С 1871-го по 1958 год доходность акций в среднем на 1,3 процентного пункта превышала доходность облигаций с тремя мимолетными исключениями, последним в 1929 году. В статье в журнале «Fortune» за март 1959 года Жильбер Бурке заявил: «В США считалось само собой разумеющимся, что хорошие акции должны давать больший доход, чем хорошие облигации, и что в противном случае их цена должна немедленно упасть», см. [Bank Credit Analyst, 1995]. Есть основания считать, что акции были доходнее облигаций и до 1871 года, с которого берет начало надежная статистика данных о фондовом рынке. С 1958 года доходность облигаций превышает доходность акций в среднем на 3,5 процентного пункта.
. В начале 1970-х годов долгосрочные процентные ставки впервые после Гражданской войны поднялись выше 5% и по сей день остаются выше 5%.
Учитывая замечательную стабильность ключевого соотношения между доходностью акций и облигаций и отсутствие на протяжении длительного периода направленной эволюции величины долгосрочных процентных ставок, никому и не снилось что-либо иное. Ни у кого не было оснований поступать так до возникновения противоцикличной денежной и фискальной политики, в результате которой уровень цен начал устойчиво расти, вместо того чтобы расти при одних обстоятельствах и снижаться при других. Другими словами, эти коренные изменения, может, и не были непредсказуемы, но зато считались совершенно немыслимыми.
А если эти события были непредсказуемы, как можно надеяться их предсказать с помощью количественных методов управления риском? Как мы можем программировать для компьютера концепции, которые не в силах запрограммировать для самих себя, которые лежат даже за пределом нашего воображения?
Мы не в состоянии ввести в компьютер данные о будущем, потому что они нам недоступны. Поэтому мы впихиваем туда данные о прошлом, чтобы запустить механизм созданных нами моделей принятия решений, будь они линейными или нелинейными. Но здесь нас подстерегает логическая ловушка: реальные события прошлого образуют скорее последовательность взаимосвязанных событий, а не набор независимых наблюдений, как этого требуют законы теории вероятностей. История предоставляет нам только один образец экономики и рынков капитала, а не тысячи отдельных и случайно распределенных вариантов. Даже если распределение многих экономических и финансовых переменных приблизительно описывается колоколообразной кривой, мы никогда не получаем совершенной картины. Повторяю, сходство с правдой — это еще не правда. Это те возмущения и неправильности, за которыми скрываются потрясения.
Читать дальшеИнтервал:
Закладка: