Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть
- Название:Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:2012
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть краткое содержание
Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Существуют более научные методы (некоторые из них указаны в двух последних позициях списка Гарри Генри). Самое удивительное, что они окружают нас уже на протяжении десятилетий. Однако компаниям почему-то крайне сложно включать их в процесс принятия решений. Наука часто воспринимается как черный ящик – слишком сложно для понимания. В результате – и мне доводилось не раз наблюдать это – во многих компаниях вкладывают огромные суммы в научные исследования ради создания нового продукта (вспомним хотя бы фармацевтическую отрасль), но рассчитывают бюджет на маркетинговые исследования по простой формуле – как долю от объема продаж. Как не стыдно! Тот факт, что такой подход проще, никак не доказывает, что он лучше с точки зрения принятия решений. И конечно, никак не означает, что этот примитив должен подменять собой научные методы.
Вам никто не сможет назвать единственного и самого оптимального подхода к расчету бюджета. Такого просто нет. Однако давайте рассмотрим несколько методов, которые я считаю наиболее предпочтительными.
Кривая расходов и отдачи
Приведенная ниже кривая показывает, что вы можете получить за свои деньги, когда речь касается маркетинга. Я часто называю ее кривой расходов и отдачи. Расходы означают инвестиции в маркетинг, а отдача означает то, что вы пытаетесь получить за счет этих инвестиций: рост объемов продаж или прибыли; достижение целей, связанных с брендом (реклама для создания осведомленности или реклама для создания должного внимания). На рисунке ниже приведена типичная кривая ответной реакции на рекламу, формирующую осведомленность о бренде.
Давайте посмотрим на эту простую кривую более внимательно.
• Она имеет положительный угол наклона – это значит, что чем больше вы тратите на формирование осведомленности, тем выше будет ее степень.
• Кривая показывает снижение предельной отдачи – это значит, что вы получите различные результаты в зависимости от уровня расходов и уровня осведомленности. Как вы можете заметить, чем больше денег вы тратите, тем меньшую отдачу получаете. В итоге вы дойдете до точки насыщения – когда уже не сможете увеличивать показатель осведомленности вне зависимости от размера инвестиций (подобная ситуация наблюдается в крайней правой части кривой).
Построение таких кривых сопряжено с определенными проблемами, так как расчет нередко носит интуитивный характер. Если вам доступны прошлые данные об уровнях расходов и степени осведомленности, то вы сможете значительно упростить свою жизнь с помощью эконометрического моделирования, позволяющего рассчитать для кривых отдачи их форму и угол наклона. Это, разумеется, требует от нас четкого ответа на вопрос: что такое эконометрическое моделирование? Наука – эконометрические модели
В Антверпенском университете я специализировался в области количественной экономики – области, основанной на математических расчетах. Неудивительно, что этот предмет не был особенно популярен. Приверженцы математики предпочитали заниматься техническими или точными науками, но не экономикой. Поэтому встречалось довольно мало студентов – с одной стороны, не убоявшихся математики, с другой стороны, не желавших становиться инженерами, – которые занимались количественной экономикой. Я не преувеличиваю. Из тысячи студентов моего курса степень в области количественной экономики получили лишь шесть выпускников. Но зато это нас сплотило. Для сравнения представьте, насколько сильными могут быть связи между двумя сотнями психологов, собирающихся в одном зале.
Правда, нам не сильно повезло с руководителем, специалистом в области эконометрики – дисциплины, которая занимается исследованием количественных и статистических методов в применении к экономическим принципам. Эконометрические методы – чуть ли не самое важное направление, которым только могут заниматься специалисты в области количественной экономики. Мой наставник предпенсионного возраста, будучи отличным профессионалом, так и не научился общаться с аудиторией. Он стоял в аудитории, рассчитанной на пятьсот слушателей, и бубнил что-то маленькой кучке студентов (мы так и не нашли того идиота, который отвечал в университете за распределение аудиторий). Сначала мы, все шестеро, заняли первый ряд, напротив кафедры, но преподаватель ни разу даже не взглянул на нас. В какой-то момент мы решили распределиться по всей огромной аудитории – он не обратил на это никакого внимания и продолжал свои девяностоминутные бормотания.
Поэтому нет ничего странного, что мой энтузиазм по отношению к эконометрике был довольно низок, равно как и представление о ее практическом применении. Ситуация коренным образом изменилась в мой последний университетский год, когда у нас появилось несколько очень интересных преподавателей. Один из них отвечал за экономическую политику бельгийского правительства и смог объяснить нам, каким образом эконометрика может использоваться для прогнозирования спроса и предложения в экономике (что позволяло правительству заблаговременно совершать важные шаги). Другая преподавательница показала нам, каким образом эконометрика и другие количественные методы могут использоваться в маркетинге и продажах. И если бы не она (и не моя легкая влюбленность в нее), я вряд ли смог бы написать эту книгу!
Так как же работает эконометрическое моделирование? Этот метод позволяет рассчитать влияние на систему целого набора параметров (например, объемов общего потребления продукта или спроса на него). В области маркетинга специалисты по эконометрике пытались оценить спрос на тот или иной бренд.
Что может повлиять на величину спроса? Спрос на продукт зависит от цены, качества, дистрибуции, рекламы и множества других факторов . И все это может быть выражено в виде математической функции, например функции линейной регрессии. (Тут нам не обойтись без некоторых специфических подробностей, но не беспокойтесь, я постараюсь сделать это быстро и безболезненно – вы даже не заметите.) Основное уравнение линейной регрессии выглядит так:
Продажи = β1 × Предложение + β2 × Дистрибуция + β3 × Цена + β4 × Маркетинг + β5,
где β (бета) в каждом случае означает некий неизвестный фактор, определяющий, каким образом та или иная переменная будет влиять на спрос вашей продукции, то есть какое значение имеет дистрибуция. Если тот или иной параметр имеет большое влияние, то он имеет и большую бету. Если дистрибуция не имеет особого значения, то ее бета будет минимальной.
Читать дальшеИнтервал:
Закладка: