Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть

Тут можно читать онлайн Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - бесплатно ознакомительный отрывок. Жанр: Прочая старинная литература, издательство ООО «ЛитРес», www.litres.ru, год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть краткое содержание

Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - описание и краткое содержание, автор Димитри Маекс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - читать онлайн бесплатно ознакомительный отрывок

Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Димитри Маекс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вы знаете величину показателей, связанных с предложением, дистрибуцией, ценой и маркетинговыми усилиями. Как только вы определите величину беты, то сможете понять, в какой степени эти факторы влияют на объем продаж. Таким образом, основная задача состоит в нахождении значения беты. Каким образом эконометрическое моделирование может помочь нам в этом процессе?

Давайте рассмотрим практический пример, и вы сами увидите причину, по которой вам имеет смысл заниматься такой работой. Она позволяет вам создать диаграмму причинно-следственных связей (в том числе с включением фактора неизвестности) в виде самых простых графиков. А все, что способно упростить картину, – это благо.

Предположим, мы хотим разобраться, как влияют маркетинговые усилия на продажи одновременно двух брендов – при прочих равных условиях (уровень предложения, дистрибуции и цены). В данном случае мы пытаемся вычислить, какой эффект будет иметь та или иная величина маркетинговых расходов на продажи с течением времени. Приведенный ниже график показывает, каким образом могли бы выглядеть эти данные для обоих брендов. На вертикальной оси отмечены продажи брендов. На горизонтальной оси приведены маркетинговые затраты. Каждая точка представляет собой «наблюдение», то есть в нашем случае период с определенной величиной расходов и связанным с ней уровнем продаж.

Мы видим две различные картины Для бренда А почти не заметна связь между - фото 35

Мы видим две различные картины. Для бренда А почти не заметна связь между маркетинговыми усилиями и продажами. Каждый уровень маркетинговых расходов приводил к совершенно разным значениям показателя продаж. С точки зрения математики мы возвращаемся обратно к формуле (Продажи = β4 × маркетинг) и считаем бету незначительной в статистическом смысле слова. Фактически здесь не наблюдается никакой существенной корреляции. Совсем иначе обстоят дела с брендом B, где связь заметна сразу.

Эконометрическое моделирование помогло нам найти взаимосвязь маркетинговой политики и продаж. Иными словами, мы смогли нарисовать кривую, оптимальную с точки зрения всей совокупности точек. Визуально заметно, что к верхней линии ближе куда больше точек, чем к нижней.

Пока все идет неплохо Однако мы не хотим всякий раз рисовать эти линии от - фото 36

Пока все идет неплохо. Однако мы не хотим всякий раз рисовать эти линии от руки, а кроме того, не каждая ситуация в реальной жизни будет столь же простой. Нам необходимо научить компьютер рисовать эти линии и находить тенденции даже там, где мы сами их не видим.

Вот каким образом мы добились этого. Мы попросили компьютер рассчитать дистанцию между каждой точкой и линией. Затем мы попросили его сложить величины всех этих дистанций. Показатель суммы дистанций отражает степень соответствия. Чем выше сумма, тем хуже соответствие. Именно таким образом компьютер может рассчитать, какая линия лучше всего соответствует всем точкам, образующим облако.

Теперь, после того как нам стал ясен алгоритм, компьютер может нарисовать сотни линий и выбрать одну с наименьшей суммой, то есть с наибольшим соответствием. То же самое можно сделать в отношении показателей продаж и цен, продаж и дистрибуций. В сущности, мы не только можем, но и должны использовать систему для создания кривых расходов и отдачи для каждой переменной, способной повлиять на объем продаж.

Как только нам стали понятны все кривые, которые мы хотим создать, мы можем попросить компьютер найти оптимальную точку на каждой кривой, позволяющей увидеть, сколько мы должны потратить, чтобы обеспечить максимально возможный возврат на наши инвестиции в маркетинг, – и ни долларом больше.

Как вы можете заметить, эконометрическое моделирование – довольно сложная процедура, которую обычно проводят дорогостоящие специалисты. Многие компании попросту не могут себе позволить их услуги. Но даже компаниям, использующим эконометрику, часто приходится прикладывать немалые усилия, чтобы включить результаты исследований в процессы принятия решений. В итоге им приходится обращаться к слишком простым способам: разработке маркетингового бюджета в зависимости от объема продаж или использованию данных предыдущего года с поправкой на инфляцию. Почему? Дело в том, что компании не понимают те подспудные предположения, на которых основаны эконометрические заключения. Поэтому они предпочитают простые методы (о которых я рассказывал выше) – интуитивно понятные и более доступные, хотя и не основанные на реальных данных.

Дабы помочь компаниям, не имеющим возможности позволить себе эконометрическое моделирование или не способным понять его преимущества, давайте обсудим некоторые альтернативы.

Искусство гибридного метода

В свое время в тайны гибридного метода меня посвятил мой коллега Дэвид Коппок, получивший степень доктора экономики в Йельском университете. Он занимался созданием сложных эконометрических моделей еще в то время, когда я собирал Lego в детском саду.

Согласно подходу Дэвида, эконометрика используется там, где имеются доступные данные, а когда нет данных, пустоты заполняются нашими предположениями. Как только у вас появится набор данных и расчетов, гибридный подход Дэвида потребует от вас ответа на четыре вопроса.

Минимум . Если взять кривую осведомленности, о которой мы говорили выше, то каково будет значение параметра осведомленности, если мы вообще не будем тратить на него денег (крайняя левая часть кривой)?

Максимум . Какого значения параметра осведомленности мы могли бы достичь в случае неограниченного бюджета (крайняя правая часть кривой)?

Настоящий момент . Чему равны уровни осведомленности и затрат на данный момент?

Приращение . Как, с нашей точки зрения, изменится параметр осведомленности, если мы будем увеличивать или уменьшать свои инвестиции на X %?

Для своих клиентов я часто использую гибридный метод при создании кривых отклика. Иногда я сталкиваюсь с их сопротивлением этому «ненаучному» методу. Клиентов беспокоит слишком большое количество предположений. Но они не во всем правы, поскольку в рамках гибридного процесса мы всегда используем все доступные данные или эконометрические модели. Однако при отсутствии идеальных данных нам не обойтись без предположений.

В сущности, когда вы используете такие довольно грубые показатели, как отношение рекламного бюджета к объему продаж, то делаете куда более серьезные предположения относительно связи между затратами и тем, что вы получаете взамен. Например, вы сначала предполагаете, что реклама имеет один и тот же эффект в отношении различных продуктов; затем предполагаете, что содержание рекламного сообщения не имеет большого значения; после этого вы предполагаете, что реклама имеет линейный эффект, то есть если затраты 1 доллара на рекламу приводят к продажам на 2 доллара, то затраты 10 долларов приведут к продажам на 20 долларов, – и так далее. Теперь вы понимаете, почему я считаю, что методы приближенного подсчета – это не лучший путь, в отличие от гибридного подхода (даже при отсутствии достаточного объема данных).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Димитри Маекс читать все книги автора по порядку

Димитри Маекс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть отзывы


Отзывы читателей о книге Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть, автор: Димитри Маекс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x