Ричард Фейнман - 1. Современная наука о природе, законы механики

Тут можно читать онлайн Ричард Фейнман - 1. Современная наука о природе, законы механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая старинная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

1. Современная наука о природе, законы механики - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

1. Современная наука о природе, законы механики - читать онлайн бесплатно полную версию (весь текст целиком)

1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Подставив в это уравнение определяемые соотношением (11.5) значения ж', у', z', мы увидим, что это действительно так. Зна­чит, кроме уже изученных нами векторных уравнений, суще­ствуют еще какие-то соотношения, верные в любой системе ко­ординат.

Незаметно мы получили новый тип величин. Мы можем по­строить функцию х, у и z, называемую скалярной функцией,— величину, которая не имеет направления, и одинакова в обеих системах координат. Из вектора можно построить скаляр. Хорошо бы найти общее правило для этого построения. Соб­ственно говоря, мы уже нашли это правило: надо возвести в квадрат каждую из составляющих вектора и сложить их. Опре­делим теперь новую величину, которую обозначим а· а. Это не вектор, а скаляр; это число, одинаковое во всех координатных системах и определяемое как сумма квадратов трех составляю­щих вектора:

a· a=a 2 x+ a 2 y+a 2 z. (11.18)

Вы спросите: «В какой системе координат?» Но раз это число не зависит от системы координат, то ответ одинаков в любой системе координат. Мы имеем дело с новым видом величины, с инвариантом, или скаляром, полученным «возведением вектора в квадрат». Если теперь определить, исходя из векторов аи b, величину

a· b =a x b x +a y b y + a z b z , (11.19)

то можно убедиться, что эта величина совпадает в штрихованной и нештрихованной системах координат. Чтобы доказать это, заметим, что это верно для величин а· а, b· bи с· с,где с=а+b.Сумма квадратов (a x +b x ) 2 +(a y +b y ) 2 +(a z +b z) 2—ин­вариант:

x +b x ) 2 +(а y +b y )2 +(а z+ b г ) 2 = (а x '+b x ') 2+ (a y '+ b у ' ) 2 +(a z , +b z ') 2. (11.20) Раскроем скобки в обеих сторонах этого уравнения. Перекрест­ные произведения дадут нам выражения типа (11.19), а суммы квадратов составляющих аи b— выражения (11.18). Инва­риантность слагаемых типа (11.18) приводит к инвариантности перекрестных произведений типа (11.19).

Величина а· bназывается скалярным произведением двух векторов аи bи имеет много интересных и полезных свойств. Например, легко доказать, что

а· ( b+ c)= а· b+ а· с. (11.21)

Есть еще очень простой геометрический способ вычисления а· b,при котором не надо определять составляющих аи b; просто а· bесть произведение длин векторов аи bна ко­синус угла между ними. Почему? Предположим, что мы выбрали такую систему координат, в которой вектор а направлен вдоль оси х; в этом случае вектор а имеет единственную ненулевую составляющую а х , которая равна длине вектора а. Таким обра­зом, уравнение (11.19) сводится в этом случае к a · b =a x b x , что равно произведению длины вектора а на составляющую векто­ра b по направлению а, которая в свою очередь равна b cosq, т. е.

а· b= ab cosq.

Таким образом, в этой частной системе координат мы дока­зали, что a· bравно произведению длин векторов аи bна коси­нус угла между ними 9. Но если это верно в одной системе коор­динат, то это верно и во всех системах, потому что а· bне зависит от выбора системы координат.

Что хорошего может дать нам эта новая величина? Нужно ли физику скалярное произведение? Да, оно необходимо ему постоянно. Например, в гл. 4 мы назвали кинетической энер­гией величину 1 / 2 mv 2 , но если частица движется в простран­стве, то нужно возвести в квадрат отдельно составляющие ско­рости х, у и z, так что формулу для кинетической энергии можно записать в виде

к.э.= 1 / 2 m( v · v )= 1 / 2 m(v 2 x + v 2 y +v 2 z ). (11.22)

Энергия не имеет направления. Импульс же направление имеет, это — вектор, и он равен произведению массы на вектор ско­рости.

Другим примером скалярного произведения может служить работа, произведенная силой при перемещении какого-нибудь предмета с одного места на другое. Мы еще не дали определения работы, она равна изменению энергии, прибавке в весе, после того как сила Fпоработает вдоль пути s:

Работа= F· s. (11.23)

Иногда целесообразно говорить о составляющей вдоль опре­деленного направления (например, вдоль вертикали, потому что это направление силы тяжести). Для этого удобно ввести еди­ничный вектор вдоль интересующего нас направления. Под еди­ничным вектором мы будем понимать вектор, скалярное про­изведение которого на себя равно единице. Пусть это будет вектор i;тогда i· i=l.Скалярное произведение i· aравно acosq, т. е. оно равно составляющей вектора авдоль направле­ния i. Это наилучший способ получить составляющую вектора. Поступая так, мы можем найти все составляющие вектора и получить забавную формулу.

Предположим, что нам задана какая-то система координат х, у и z. Введем три вектора: i— единичный вектор вдоль оси х,

j— единичный вектор вдоль оси y и к— единичный вектор вдоль оси z. Ясно, что i· i=l. Чему же равно произведение i· j? Если угол между векторами прямой, то их скалярное произве­дение равно нулю. Таким образом,

i· i=1,

i· j= 0, j· j=1, (11.24) i· k=0, j· k=0, k· k=l.

Используя эти свойства векторов i, j, k, можно записать любой вектор а в виде

a=a x · i + a y · j + a z · k . (11.25)

Таким образом, можно от составляющих вектора легко перейти к самому вектору.

Мы изучили далеко не все свойства векторов. Однако, прежде чем углубиться в этот вопрос, научимся сперва применять обсужденные сейчас идеи в физике. И тогда, когда мы хорошо овладеем основным материалом, будет легче продвинуться даль­ше, не впадая в ошибки. Позднее мы увидим, что удобно опре­делить еще одно произведение двух векторов, которое назы­вается векторным произведением и записывается в виде аX b. Однако обсуждение этого вопроса лучше отложить до следующей главы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




1. Современная наука о природе, законы механики отзывы


Отзывы читателей о книге 1. Современная наука о природе, законы механики, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x