Ричард Фейнман - 1. Современная наука о природе, законы механики

Тут можно читать онлайн Ричард Фейнман - 1. Современная наука о природе, законы механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая старинная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

1. Современная наука о природе, законы механики - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

1. Современная наука о природе, законы механики - читать онлайн бесплатно полную версию (весь текст целиком)

1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Перейдем теперь к скорости. Почему скорость есть вектор? Если координаты точки равны х, у, z, то скорость ее равна dx/dt, dy/dt, dz/dt. Вектор это или не вектор? Дифференцируя выражение (11.5), можно найти закон преобразования dx'ldt. Видно, что величины dx/dt, dy/dt преобразуются по тому же закону, что и х и у. Таким образом, скорость есть вектор. Вы­ражение для скорости можно записать очень интересно:

v =dr/dt.

Постараемся нагляднее представить себе, что такое ско­рость и почему она вектор. Далеко ли продвинется частица за малое время Dt? Ответ: на Dr, т. е. если частица находится «здесь» в первое мгновение, а «там» — во второе, то векторная разность положений частицы равна вектору Dr=r 2-r 1. расположенному вдоль направления движения. Как это выглядит, показано на фиг. 11.6. Если разделить этот вектор на промежуток времени Dt = t 2 -t 1 , то мы получим вектор «средней скорости».

Иначе говоря, под вектором скорости мы понимаем предел разности радиус-векторов, соответствующих моментам t+Dt и t, деленной на Dt при Dt, стремящемся к нулю:

Скорость есть вектор постольку поскольку она равна разности двух векторов Это - фото 141

Скорость есть вектор постольку, поскольку она равна разности двух векторов. Это верно также и потому, что составляющие этого вектора равны dx/dt, dy/dt, dz/dt. Подумав над тем, что сейчас было проделано, мы придем к выводу, что, продиффе­ренцировав любой вектор по времени, мы снова получим какой-то новый вектор. Таким образом, имеется несколько способов получать новые векторы: 1) умножая вектор на постоянное число; 2) дифференцируя вектор по времени; 3) складывая два вектора или вычитая.

§ 6. Законы Ньютона в векторной записи

Чтобы записать законы Ньютона в векторной форме, мы должны поучиться еще кое-чему и определить вектор ускоре­ния. Этот вектор равен производной по времени вектора скоро­сти, причем легко показать, что его составляющие равны вто­рым производным х, у и z no t:

После этого законы Ньютона можно записать таким образом или ma F 1113 - фото 142

После этого законы Ньютона можно записать таким образом: или ma = F, (11.13)

m(d 2r/dt 2)=F (11.14)

Фиг 116 Перемещение частиц за малое время Dtt 2t 1 Теперь задача о - фото 143

Фиг. 11.6. Перемещение частиц за малое время Dt=t 2-t 1,.

Теперь задача о доказательстве инвариантности законов Нью­тона относительно вращений сводится к следующему: нужно доказать, что а (ускорение) есть вектор; это мы уже сделали. Затем нужно доказать, что F (сила) есть вектор; это мы предпола­гаем. Следовательно, если сила есть вектор, то уравнение (11.13) будет выглядеть одинаково во всех системах координат, ибо нам известно, что ускорение тоже вектор. Запись уравнений в виде, не содержащем явно х, у, z, привлекательна тем, что нам нет необходимости выписывать три уравнения каждый раз, ког­да мы хотим написать законы Ньютона или другие законы фи­зики. Мы записываем то, что выглядит как один закон, хотя фактически, конечно, это три закона для каждой оси системы координат, потому что любое векторное уравнение содержит в себе утверждение, что все составляющие равны.

Тот факт, что ускорение — это скорость изменения вектора скорости, помогает найти ускорение в любых, казалось бы, трудных обстоятельствах. Предположим, например, что части­ца, двигаясь по какой-то сложной кривой (фиг. 11.7), имеет в момент t 1скорость v 1, а несколько позже, в момент t 2 , скорость v 2. Чему равно ускорение? Ответ: ускорение равно разности скоростей, деленной на малый промежуток времени; значит, нужно знать разность скоростей. Как же найти эту разность? Чтобы найти разность двух векторов, проведем вектор через концы векторов v 2и v 1, иначе говоря, начертим вектор D в ка­честве разности этих двух векторов. Верно? Нет! Мы можем поступать так только тогда, когда начала векторов расположе­ны в одной точке! Вычитать векторы, приложенные к разным точкам, бессмысленно. Остерегайтесь этого! Чтобы вычесть векторы, нужно начертить другую схему. На фиг. 11. 8 векторы v 1и v 2перенесены параллельно и равны их двойникам, изоб­раженным на фиг. 11.7.

Фиг 11 7 Криволинейная траектория Фиг 118 Диаграмма для - фото 144

Фиг. 11 .7. Криволинейная траек­тория.

Фиг 118 Диаграмма для вычисления ускорения Теперь можно поговорить об - фото 145

Фиг. 11.8, Диаграмма для вычисления ускорения.

Теперь можно поговорить об ускорении. Ускорение, конечно, просто равно Dv/Dt. Интересно заметить, что разность скоростей можно разделить на две части: можно представить себе, что ускорение состоит из двух составляющих: Dv ║— вектора, параллельного касательной к пути, и вектора Dv ┴, перпендикулярного к этой касательной. Эти векторы пока­заны на фиг. 11.8. Касательное к пути ускорение равно, есте­ственно, лишь изменению длины вектора, т. е. изменению вели­чины скорости v:

a ║=dv/dt. (11.15)

Другую, поперечную составляющую ускорения легко вычис­лить, взглянув на фиг. 11.7 и 11.8. За короткое время Dt изме­нение угла между v 1и v 2равно малому углу Dq. Если величина скорости равна v, то

Dv ┴=vDq, а ускорение а равно

а ┴=v(dq/dt).

Теперь нам нужно знать Dq/Dt. Эту величину можно найти так: если в данный момент кривую можно приблизительно заменить окружностью радиусом R, то, поскольку за время Dt частица пройдет расстояние s=vDt,изменение угла равно

Dq=v(Dt/R) или Dq/Dt=v/R.

Таким образом, как мы уже установили ранее,

a=v 2/R. (11.16)

§ 7. Скалярное произведение векторов

Давайте еще немного займемся свойствами векторов Легко понять что длина шага - фото 146

Давайте еще немного займемся свойствами векторов. Легко понять, что длина шага в пространстве одинакова во всех ко­ординатных системах. Следовательно, если какому-то шагу r соответствуют составляющие х, у, z в одной системе координат и составляющие х', у', z' в другой системе, то расстояние r= |r| одно и то же в обеих системах. Сначала мы, конечно, долж­ны ввести два расстояния

а затем проверить, что эти обе величины равны. Чтобы не во­зиться с квадратным корнем, будем сравнивать квадраты рас­стояний. Мы должны, таким образом, показать, что

x 2 2 + z 2 =x' 2 +у' 2 + г' 2 . (11.17)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




1. Современная наука о природе, законы механики отзывы


Отзывы читателей о книге 1. Современная наука о природе, законы механики, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x