Алекс Беллос - Красота в квадрате
- Название:Красота в квадрате
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2015
- ISBN:9785000576052
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алекс Беллос - Красота в квадрате краткое содержание
Красота в квадрате - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Мы можем сделать то же самое. Вот числа от 1 до 20:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Больше половины этих чисел начинаются с цифры 1, поскольку от 11 до 19 все числа начинаются с единицы. Продолжаем считать. Где бы мы ни остановились, чисел с первой цифрой 1 будет не меньше, чем чисел с первой цифрой 2, поскольку для того, чтобы добраться до второго десятка, второй сотни или второй тысячи, необходимо назвать все числа первого десятка, первой сотни и первой тысячи. Точно так же чисел с первой цифрой 2 будет не меньше, чем чисел с первой цифрой 3 и т. д., вплоть до чисел с первой цифрой 9. Такое обоснование помогает понять закон Бенфорда на интуитивном уровне, и его вполне достаточно для суда как государственного органа, а вот для суда математики требуется более строгое доказательство.
Одно из самых поразительных свойств закона Бенфорда — что последовательность цифр не зависит от единицы измерения. Когда массив финансовых данных подчиняется закону Бенфорда в случае, если они выражены в фунтах, он будет подчиняться этому закону и после их конвертации в доллары. Если массив географических данных соответствует закону Бенфорда в километрах, он будет соответствовать ему и в случае их представления в милях. Это свойство, обозначаемое термином «масштабная инвариантность» , верно всегда, поскольку числа, взятые из газет, банковских счетов и атласов мира показывают одно и то же распределение первых цифр независимо от используемых систем измерения и валюты.
Для перевода расстояния из миль в километры необходимо умножить его на 1,6; для конвертации денежной суммы из фунтов в доллары ее тоже следует умножить на фиксированное число, соответствующее текущему обменному курсу. Простейший способ понять масштабную инвариантность закона Бенфорда сводится к анализу поведения чисел в случае их умножения на два. Если число, начинающееся с цифры 1, умножить на 2, результат будет начинаться с цифры 2 или 3. (Например, 12 × 2 = 24; 166 × 2 = 332.) Если число, начинающееся с цифры 2, умножить на 2, первой цифрой произведения будет 4 или 5. (Например, 2,1 × 2 = 4,2; 25 × 2 = 50.) Первые две строки представленной ниже таблицы показывают, что происходит с первой цифрой числа в случае его умножения на два.
Первая цифра числа n
1
2
3
4
5
6
7
8
9
Первая цифра числа 2 n
2 или 3
4 или 5
6 или 7
8 или 9
1
1
1
1
1
Процент чисел в распределении Бенфорда
30,1
17,6
12,5
9,7
7,9
6,7
5,8
5,1
4,6
Предположим, S — это массив данных, подчиняющихся закону Бенфорда. Давайте умножим на два каждое число, входящее в массив S, и обозначим новый массив чисел буквой T. Согласно таблице, числа из массива S, начинающиеся с цифры 5, составляют 7,9 процента от общего количества чисел в массиве; числа, первая цифра которых 6, — 6,7 процента, 7, 8 и 9 — 5,8; 5,1 и 4,6 процента соответственно. Следовательно, в массиве S доля чисел, начинающихся с 5, 6, 7, 8 или 9, равна 7,9 + 6,7 + 5,8 + 5,1 + 4,6 = 30,1 процента. Если числа, первая цифра которых 5, 6, 7, 8 или 9, умножить на два, произведение всегда будет начинаться с цифры 1, как показано в таблице. Другими словами, 30,1 процента чисел в массиве T начинается с цифры 1, что соответствует закону Бенфорда!
Данная закономерность имеет место и в случае других цифр. Умножение на 2 сначала нарушает, а затем восстанавливает действие закона Бенфорда, но распределение первых цифр при этом сохраняется. Я выбрал умножение на 2, поскольку это самый простой множитель, но с таким же успехом можно было бы взять в качестве множителя 3, или 1,6, или число π, или какое-либо еще — закон Бенфорда действовал бы, так или иначе. Под любое изменение масштаба распределение Бенфорда перенастраивается, как будто это делает рука самого Бога.
В течение нескольких десятилетий после открытия закона Бенфорда он считался не более чем аномалией, трюком из шоу иллюзионистов, нумерологией, но никак не математикой. Однако в 90-х годах ХХ столетия профессор Технологического института штата Джорджия Тед Хилл решил найти теоретическое обоснование распространенности этого закона. Сейчас ученый живет в городе Лос-Осос; это чуть дальше вдоль побережья Тихого океана от того места, где обосновался Даррелл Доррелл. Тед — бывший солдат, высокий, широкоплечий стройный мужчина с бритой головой и седыми усами, сохранивший армейскую выправку. Когда я приехал к нему, он повел меня в небольшой деревянный домик в конце сада, из окон которого открывался вид на океан и два национальных парка. В камине потрескивали дрова. Тед назвал этот домик «математической дачей». Это глобальный центр исследования закона Бенфорда.
Первый серьезный результат, полученный Тедом Хиллом, — это доказательство того, что при существовании некой универсальной закономерности распределения первых цифр оно подчиняется исключительно закону Бенфорда. То есть распределение первых цифр по Бенфорду — единственное, которое не меняется в случае изменения масштаба. Этот вывод позволил Теду изобрести игру, в которую мы с ним сыграли.
«Каждый из нас выбирает число, — объяснил мне Тед. — Затем мы их перемножаем. Если произведение начинается с цифры 1, 2 или 3, значит, выигрываю я; если с цифры 4, 5, 6, 7, 8 или 9 — то вы».
На первый взгляд может показаться, что в этой игре явный перевес в мою пользу, поскольку в моем распоряжении шесть цифр, тогда как у Теда — всего три. Тем не менее в большинстве случаев Тед будет выигрывать, выбирая числа в соответствии с распределением Бенфорда, другими словами — если на протяжении нескольких игр он будет выбирать числа, начинающиеся с цифры 1, — то в 30,1 процента случаев, цифру 2 — в 17,6 процента случаев и т. д. Если Тед будет действовать таким образом, от выбранного мной числа не зависит, какая цифра окажется первой: в 30,1 процента случаев это будет цифра 1, в 17,6 процента случаев — цифра 2, в 12,5 процента случаев — цифра 3. Сумма этих трех показателей составляет 60,2 процента; следовательно, Тед выиграет в 60,2 процента случаев. В эту игру хорошо играть на деньги: даже если в вашем распоряжении только 1, 2 и 3 в качестве целевых цифр, ваши шансы на победу гораздо выше, чем в случае цифр 4, 5, 6, 7, 8 и 9, хотя поначалу кажется, что это не так.
Эта игра помогает объяснить, почему многие массивы данных, формирующиеся естественным образом, подчиняются закону Бенфорда. Предположим, мы с Тедом сыграли в эту игру сто раз; у него были числа ( a 1, a 2, a 3… a 100), а у меня — числа ( b 1, b 2, b 3… b 100). Мы знаем, что если числа Теда удовлетворяют закону Бенфорда, то результат умножения его чисел на мои ( a 1× b 1, a 2× b 2, a 3× b 3… a 100× b 100) также подчиняется этому закону. Следовательно, если мы умножим эти числа на еще один набор случайно выбранных чисел ( c 1, c 2, c 3… c 100), для того чтобы получить еще один массив чисел ( a 1× b 1× c 1, a 2× b 2× c 2, a 3× b 3× c 3… a 100× b 100× c 100), этот массив тоже будет соответствовать закону Бенфорда. Дело в том, что, сколько бы массивов данных мы ни умножали друг на друга, достаточно, чтобы хотя бы один из них удовлетворял закону Бенфорда, для того чтобы этому закону подчинялся и массив результатов умножения. Другими словами, закон Бенфорда настолько заразителен, что наличие в мультипликативной цепочке единственного массива данных, удовлетворяющего ему, влияет на общий результат. Поскольку многие явления (такие как цены акций, численность населения, длина рек и т. д.) формируются под воздействием повышения или снижения различных показателей, обусловленного множеством независимых случайных факторов, это объясняет широкую распространенность неравномерного распределения первых цифр.
Читать дальшеИнтервал:
Закладка: