Алекс Беллос - Красота в квадрате

Тут можно читать онлайн Алекс Беллос - Красота в квадрате - бесплатно ознакомительный отрывок. Жанр: Прочая старинная литература, издательство Манн, Иванов и Фербер, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алекс Беллос - Красота в квадрате краткое содержание

Красота в квадрате - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Красота в квадрате - читать онлайн бесплатно ознакомительный отрывок

Красота в квадрате - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Алекс Беллос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если говорить языком математики, частота встречаемости слов в романе «Улисс» приближенно подчиняется следующему закону:

частота × ранг = 26 500

Эту формулу можно привести к такому виду:

Красота в квадрате - изображение 22

В общем виде данное уравнение выглядит так:

Следовательно частотность употребления того или иного слова обратно - фото 23

Следовательно, частотность употребления того или иного слова обратно пропорциональна его рангу (порядковому номеру) в списке, упорядоченном по убыванию частоты. Другими словами, если ранг слова в n раз больше, то частота его использования в n раз меньше.

Изучив другие тексты, Ципф пришел к выводу, что во всех книгах на всех языках частота встречаемости слов и их порядковый номер в частотном списке находятся в обратной зависимости, но с небольшим уточнением:

Это уравнение известно как закон Ципфа Когда два числа записаны в форме x y - фото 24

Это уравнение известно как закон Ципфа. (Когда два числа записаны в форме x y , мы говорим « x в степени y », и это значит, что число x умножается само на себя y раз. Как мы знаем со школьных лет, 4 2= 4 × 4, а 2 3= 2 × 2 × 2. Однако число y может быть не только целым числом. Следовательно, 2 1,5означает, что число 2 умножается само на себя 1,5 раза, а это равно 2,83. Чем ближе значение числа y к 1, тем ближе x y к числу x .)

Ципф обнаружил, что значение константы a всегда стремится к 1 независимо от того, кто автор книги и каково ее содержание. То есть зависимость между частотой встречаемости слов и их рангом всегда очень близка к обратно пропорциональной зависимости. В случае романа «Улисс» значение a равно 1.

Я считаю закон Ципфа чрезвычайно увлекательным. Он раскрывает заманчиво простую математическую закономерность, определяющую выбор слов. Я решил выяснить, соблюдается ли этот закон в книге, которую вы сейчас читаете. Для подсчета частотности слов я воспользовался компьютерной программой, а не гуммированной бумагой и ножницами. Просматривая частотную таблицу, я увидел, что частота встречаемости слов действительно обратно пропорциональна их порядковому номеру в таблице. Самое распространенное слово, употребляемое мною в книге («the»), встречается в десять раз чаще, чем десятое по частоте слово «was», примерно в сто раз чаще, чем сотое по частоте слово «who», и в тысячу раз чаще, чем тысячное слово «spirals».

Когда я составил на основе данных о частоте и ранге слов график (первый график, представленный ниже), оказалось, что соответствующие точки лежат близко к координатным осям. График, отображающий обратно пропорциональную зависимость, всегда представляет собой L-образную кривую. Сначала кривая резко снижается, а затем быстро выравнивается и переходит в своего рода «длинный хвост». Это говорит о том, что одни слова встречаются в тексте в огромном количестве, а другие почти не используются. (На самом деле во всех текстах, независимо от их объема, около 50 процентов слов употребляются только один раз. В данной книге таких слов 51 процент [8].)

Распределение частотности слов в книге Алекс в Зазеркалье На нижнем графике - фото 25

Распределение частотности слов в книге Алекс в Зазеркалье На нижнем графике - фото 26

Распределение частотности слов в книге «Алекс в Зазеркалье»

На нижнем графике отображены те же данные, но изменен масштаб. Расстояние от 1 до 10, от 10 до 100 и от 100 до 1000 теперь одинаковое на обеих осях, другими словами, мы имеем двойной логарифмический масштаб. График, напоминающий провисший кабель, как по волшебству превратился в туго натянутую струну. Появился некий математический порядок: точки графика образуют почти идеальную прямую.

Прямая линия на графике, построенном в двойном логарифмическом масштабе, — доказательство того, что эти данные подчиняются закону Ципфа (в Приложении 2 я объясню почему). С математической точки зрения прямая линия более полезна, чем кривая с длинным хвостом, поскольку ее свойства легче анализировать. В частности, у прямой есть постоянный градиент. Мы вернемся к понятию градиента немного позже, а пока вам нужно знать только то, что градиент — это степень наклона: отношение расстояния, покрытого прямой по вертикали, к расстоянию по горизонтали. Если нарисовать линию наилучшего соответствия и определить ее градиент, он и будет представлять собой константу a в уравнении закона Ципфа. Я рассчитал градиент линии на расположенном выше графике. Он чуть больше единицы, а это значит, что по сравнению с Джеймсом Джойсом я чаще использую самые распространенные слова и реже — наименее распространенные.

При более близком рассмотрении не все точки на графике попадают на прямую линию. Некоторые отклоняются от нее, особенно примерно двадцать слов, встречающихся в тексте чаще всего. Однако в большинстве случаев точки находятся очень близко к этой линии. Поразительно то, что порядковый номер подавляющего количества слов в этой книге позволяет достаточно точно определить частоту их использования, и наоборот.

Профессор Ципф обнаружил такую же обратно пропорциональную зависимость еще в одной книге — книге переписи населения США 1940 года. Однако в этот раз он подсчитывал не частотность слов, а численность населения крупных американских городов.

Муниципальный район

Ранг

Население

Нью-Йорк / северо-восток Нью-Джерси

1

12 миллионов

Кливленд

10

1,2 миллиона

Гамильтон/Мидлтаун

100

0,11 миллиона

В это трудно поверить, но и здесь прослеживается та же закономерность. В Нью-Йорке (самом крупном городе США) численность населения в десять раз больше, чем в Кливленде (десятом по величине городе), и в сто раз больше, чем в Гамильтоне (сотом по величине городе). Никто не предлагал американцам расселяться с такой точностью. Тем не менее их выбор подчинялся строгой закономерности. Это происходит и сейчас. На самом деле все мы поступаем именно так. На представленных ниже графиках в двойном логарифмическом масштабе отображены данные о численности населения американских городов и их ранге (порядковом номере), взятые из отчетов о переписи населения США 2000 года, а также данные о численности населения крупнейших городов мира.

Распределение численности населения крупнейших городов США в 2000 году график - фото 27

Распределение численности населения крупнейших городов США в 2000 году график - фото 28

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Красота в квадрате отзывы


Отзывы читателей о книге Красота в квадрате, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x