Педро Домингос - Верховный алгоритм

Тут можно читать онлайн Педро Домингос - Верховный алгоритм - бесплатно ознакомительный отрывок. Жанр: Прочая старинная литература, издательство Манн, Иванов и Фербер, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Педро Домингос - Верховный алгоритм краткое содержание

Верховный алгоритм - описание и краткое содержание, автор Педро Домингос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Верховный алгоритм - читать онлайн бесплатно ознакомительный отрывок

Верховный алгоритм - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Педро Домингос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Более серьезная проблема заключается в том, что метод k -средних работает, только когда кластеры легко различимы: они, как пузыри в гипер­пространстве, плавают далеко друг от друга, и у всех схожий объем и схожее количество членов. Если какое-то условие не выполнено, начинаются неприятности: вытянутые кластеры делятся надвое, маленькие поглощаются более крупными соседями и так далее. К счастью, можно поступить лучше.

Допустим, мы пришли к выводу, что разрешить Робби слоняться по реальному миру — слишком медленный и громоздкий способ обучения, и вместо этого посадили его смотреть сгенерированные компьютером изображения, как будущего летчика в авиационном тренажере. Мы знаем, из каких класте­ров взяты картинки, но не скажем об этом Робби, а будем создавать их, случайно выбирая кластер (скажем, «игрушки»), а потом синтезируя пример этого кластера (маленький пухлый бурый плюшевый медведь с большими черными глазами, круг­лыми ушами и галстуком-бабочкой). Кроме того, мы будем произвольно выбирать свойства примера: размер мишки — в среднем 25 сантиметров, мех с вероятностью 80 процентов бурый, иначе — белый и так далее. После того как Робби увидит очень много сгенерированных таким образом картинок, он должен научиться делить их на кластеры «люди», «мебель», «игрушки» и так далее, потому что люди, например, больше похожи на людей, а не на мебель. Возникает интересный вопрос: какой алгоритм кластеризации лучше с точки зрения Робби? Ответ будет неожиданным: наивный байесовский алгоритм — первый алгоритм для обучения с учителем, с которым мы познакомились. Разница в том, что теперь Робби не знает классов и ему придется их угадать!

Очевидно: если бы Робби их знал, все пошло бы отлично — как в наив­ном байесовском алгоритме, каждый кластер определялся бы своей вероятностью (17 процентов сгенерированных объектов — игрушки) и распределением вероятности каждого атрибута среди членов кластера (например, 80 процентов игрушек коричневые). Робби мог бы оценивать вероятности путем простого подсчета числа игрушек в имеющихся данных, количества коричневых игрушек и так далее, но для этого надо знать, какие предметы — игрушки. Эта проблема может показаться крепким орешком, но, оказывается, мы уже знаем, как ее решить. Если бы в распоряжении Робби имелся наивный байесовский классификатор и ему необходимо было определить класс нового предмета, нужно было бы только применить классификатор и вычислить вероятность класса при данных атрибутах объекта. Маленький, пухлый, коричневый, похож на медведя, с большими глазами и галстуком-бабочкой? Вероятно, игрушка, но, возможно, животное.

Итак, Робби сталкивается с проблемой «курица или яйцо»: зная классы предметов, он мог бы получить модели классов путем подсчета, а если бы знал модели, мог бы сделать заключение о классах объектов. Если вы думаете, что опять застряли, это далеко не так: чтобы стартовать, надо просто начать угадывать классы для каждого предмета каким угодно способом, даже произвольно. На основе этих классов и данных можно получить модели классов, на основе этих моделей — вновь сделать вывод о классах и так далее. На первый взгляд это кажется безумием: придется бесконечно кружиться между выводами о классах на основе моделей и моделей на основе их классов, и даже если это закончится, нет причин полагать, что кластеры получатся осмысленные. Но в 1977 году трое статистиков из Гарварда — Артур Демпстер, Нэн Лэрд и Дональд Рубин — показали, что сумасшедший план работает: после каждого прохождения по этой петле модель кластера улучшается, а после достижения моделью локального максимума похожести повторения заканчиваются. Они назвали эту схему EM -алгоритмом, где E — ожидания (expectation, заключение об ожидаемых вероятностях), а M — максимизация (maximization, оценка параметров максимальной схожести). Еще они показали, что многие предыдущие алгоритмы были частными случаями EM . Например, чтобы получить скрытые модели Маркова, мы чередуем выводы о скрытых состояниях с оценкой вероятностей перехода и наблюдения на их основе. Когда мы хотим получить статистическую модель, но нам не хватает какой-то ключевой информации (например, классов примеров), всегда можно использовать EM -алгоритм, что делает его одним из самых популярных инструментов в области машинного обучения.

Вы, возможно, заметили определенное сходство между методом k -средних и EM -алгоритмом, поскольку оба чередуют отнесение сущностей к кластерам и обновление описаний кластеров. Это не случайность: метод k -средних сам по себе — частный случай EM -алгоритма, который получается, если у всех атрибутов «узкое» нормальное распределение, то есть нормальное распределение с очень маленькой дисперсией. Если кластеры часто пере­крываются, объект может относиться, скажем, к кластеру A с вероят­ностью 0,7 и к кластеру B с вероятностью 0,3, и нельзя просто отнести его к кластеру A без потери информации. EM -алгоритм учитывает это путем частичного приписывания объекта к двум кластерам и соответствующего обновления описаний этих кластеров, однако, если распределения очень сконцентрированы, вероятность, что сущность принадлежит к ближайшему кластеру, всегда будет приблизительно равна единице, и нужно только распределить объекты по кластерам и усреднить их в каждом кластере, чтобы вычислить среднее — то есть получится алгоритм k -среднего.

До сих пор мы рассматривали получение всего одного уровня кластеров, но мир, конечно, намного богаче, и одни кластеры в нем вложены в другие вплоть до конкретных предметов: живое делится на растения и животных, животные — на млекопитающих, птиц, рыб и так далее до домашнего любимца — пса Фидо. Но проблем это не создает: получив набор кластеров, к ним можно относиться как к объектам и, в свою очередь, объединять их в кластеры все более высокого уровня, вплоть до кластера всех объектов. Или же можно начать с грубой кластеризации, а затем все больше дробить кластеры на подкластеры: игрушки Робби делятся на мягкие игрушки, конструкторы и так далее. Мягкие игрушки — на плюшевых медведей, котят и так далее. Дети, видимо, начинают изучение мира где-то посередине, а потом идут и вверх, и вниз. Например, понятие «собака» они усваивают до того, как узнают о «животных» и «гончих». Для Робби это может стать хорошей стратегией.

Открытие формы данных

Независимо от того, поступают ли данные в мозг Робби из его органов чувств или в виде потока миллионов кликов клиентов Amazon, сгруппировать множество в меньшее число кластеров — лишь половина дела. Второй этап — сократить описание объектов. Первый образ мамы, который видит Робби, будет состоять, может быть, из миллиона пикселей, каждый своего цвета, однако человеку вряд ли нужен миллион переменных, чтобы описать лицо. Аналогично каждый товар, на который вы кликнули на сайте Amazon, дает частицу информации о вас, но на самом деле Amazon интересны не ваши клики, а ваши вкусы. Вкусы довольно стабильны и в какой-то мере подразумеваются в кликах, количество которых растет безгранично во время пользования сайтом и должно понемногу складываться в картину предпочтений точно так же, как пиксели складываются в картинку лица. Вопрос в том, как реализовать это сложение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Педро Домингос читать все книги автора по порядку

Педро Домингос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Верховный алгоритм отзывы


Отзывы читателей о книге Верховный алгоритм, автор: Педро Домингос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x