Михаил Бармин - Общая и Неорганическая химия с примерами решения задач

Тут можно читать онлайн Михаил Бармин - Общая и Неорганическая химия с примерами решения задач - бесплатно полную версию книги (целиком) без сокращений. Жанр: beginning-authors, издательство Литагент Selfpub.ru (искл). Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Общая и Неорганическая химия с примерами решения задач
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Selfpub.ru (искл)
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Михаил Бармин - Общая и Неорганическая химия с примерами решения задач краткое содержание

Общая и Неорганическая химия с примерами решения задач - описание и краткое содержание, автор Михаил Бармин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Настоящее учебное пособие предназначено для абитуриентов, сдающих ЕГЭ в 2017 и последующих годах. В связи с обновлением большинства учебных пособий и учебников по общей и неорганической химии выпуск учебного пособия такого типа актуален. Данное пособие отличается от аналогичных изданий, например тем, что в конце его приводится как бы краткая аннотация лекций, что помогает, с одной стороны, запоминанию, с другой – помогает понять историю возникновения понятий и законов и внутри предметной связи. В этой книге есть решения типовых задач (тесты 27-29), что несомненно повысит качество преподавания. Супер полезно для студентов России, Белоруссии, Украины и всех знающих русский язык, более того полезно для студентов всех форм и типов образования не химических вузов. Будем рады предложениям и замечаниям.

Общая и Неорганическая химия с примерами решения задач - читать онлайн бесплатно полную версию (весь текст целиком)

Общая и Неорганическая химия с примерами решения задач - читать книгу онлайн бесплатно, автор Михаил Бармин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

К классу гидроксидов относятся соединения, содержащие одну или несколько гидроксильных групп – ОН.

Гидроксиды в свою очередь делятся на основания, кислоты (кислородосодержащие, бескислородные) и амфотерные основания. Принадлежность гидроксида к основаниям или кислотам определяется прочностью связи между элементом и кислородом и кислородом и водородом.

Если в гидроксидах связь О – Н более полярная, чем связь О – Э, то при попадании в полярный растворитель эта связь будет еще больше поляризоваться и перейдет в ионную. При диссоциации образуется катион водорода и анион так называемого кислотного остатка. Такой гидроксид относят к классу кислот:

HNO 3= H ++ NO 3 - ,

Н +протон, ион водорода, катион (положительно заряженный ион).

NO 3 -– нитрат ион, анион, кислотный остаток азотной кислоты.

Если же оказывается более полярной связь между элементом и кислородом, то в полярном растворителе при поляризации связи электронная плотность смещается в сторону кислорода и образуется гидроксильный анион (гидроксид ион) и катион элемента:

Согласно теории электролитической диссоциации к основаниям относятся электролиты, при распаде которых на ионы в качестве анионов образуются только гидроксид ионы.

KOH K ++ OH -

С этой точки зрения, к основаниям относят гидроксиды металлов и гидроксид аммония (NH 4OH). Название таких оснований состоит из слова гидроксид и русского названия металла в родительном падеже (на пример гидроксид натрия NaOH). Если металл образует несколько оснований, то после названия указывается степень окисления металла в скобках римскими цифрами (на пример Fe(OH) 2, Fe(OH) 3: гидроксид железа II и III соответственно. Кроме того существует и традиционные названия, так гидроксид натрия NaOH называют едкий натр, каустическая сода; KOH называют едкий кали, Ca(OH) 2– гашеная известь.

Основания бывают растворимые в воде, малорастворимые и практически нерастворимые. Растворимые в воде основания называют щелочами.

По числу гидроксогрупп определяют кислотность основания. Так NaOH, KOH однокислотные основания; Ca(OH) 2, Fe(OH) 2– двухкислотные; Fe(OH) 3, Al(OH) 3– трехкислотные.

Основания двух– и более кислотные диссоциируют ступенчато:

1 ступень Ca(OH) 2CaOH 1++ OH 1-

2 ступень CaOH 1+Ca 2++ OH 1-

Получение оснований

Растворимые основания можно получить при взаимодействии щелочного (IА подгруппа) или щелочно-земельного (IIА подгруппа) металла с водой или оксида металла с водой:

2Na + 2H 2O = 2NaOH + H 2

Na 2O + H 2O = 2NaOH

Ca+2H 2O=Ca(OH) 2+H 2

2) Малорастворимые основания получаются при взаимодействии соли соответствующего катиона с растворимым основанием:

FeSO 4+ 2NaOH = Fe(OH) 2+ Na 2SO 4

Свойства оснований

Неорганические основания являются твердыми веществами, за исключением гидроксида аммония. Растворы оснований мыльные на ощупь, изменяют окраску индикатора фенолфталеина в малиновый цвет, а лакмуса – в синий.

Гидроксиды калия и натрия устойчивы к нагреванию. Большинство оснований разлагаются при нагревании на воду и соответствующий оксид

2.ОСНОВАНИЯ, КИСЛОТЫ, СОЛИ.

2.1Основания

По теории электролитической диссоциации к основаниям относятся электролиты, при электролитической диссоциации которых в качестве анионов образуются только гидроксид-ионы.

Кислотные оксиды взаимодействуют с основными оксидами и гидроксидами. В результате этого взаимодействия образуются соли:

SO 3+ CaO = CaSO 4

SO 3+ Ca(OH) 2= CaSO 4+ H 2O

К амфотерным относят оксиды, которые могут проявлять свойства как основных оксидов, так и кислотных. То есть амфотерный оксид может взаимодействовать как с кислотой, так и с основанием. Амфотерные оксиды образуются некоторыми металлами в степени окисления +2 (BeO, ZnO, SnO, PbO) и почти всеми металлами в степени окисления +3 (Al 2O 3, Cr 2O 3).

ZnO + 2HCl = ZnCl 2+ H 2O

ZnO + 2NaOH = Na 2ZnO 2+ H 2O

цинкат натрия

Амфотерным оксидам соответствуют амфотерные гидроксиды.

Если металл может иметь несколько степеней окисления, то с повышением степени окисления основные свойства его оксидов будут убывать, а кислотные усиливаться. Так MnO основной оксид, MnO 2амфотерный, а Mn 2O 7кислотный.

Оксиды могут быть получены разными способами:

окисление простых веществ

4P + 5O 2= 2P 2O 5

2Mg + O 2= 2MgO

Cu + 4HNO 3= Cu(NO 3) 2+ 2NO 2+ 2H 2O

конц.

C + 4HNO 3= CO 2+ 4NO 2+ 2H 2O

конц.

окисление сложных веществ

CH 4+ 2O 2= CO 2+ 2H 2O

разложение сложных веществ

CaCO3 = CaO + CO 2

2Cu(NO 3) 2= 2CuO + 4NO 2+ O 2

Cu(OH) 2= CuO + H 2O

2Fe(OH) 3= Fe 2O 3+ 3H 2O

Все общие химические свойства оснований обусловлены наличием в них гидроксогрупп ОН -:

основания взаимодействуют с кислотами (реакция нейтрализации):

KOH + HCl = KCl + H 2O

K ++ OH -+ H ++ Cl -= K ++ Cl -+ H 2O

OH -+ H -= H 2O

основания реагируют с кислотными оксидами с образоваием соли и воды:

2NaOH + CO 2= Na 2CO 3+ H 2O

2Na + 2OH– + CO 2= 2Na+ + CO 3 2-+ H 2O

2OH -+ CO 2= CO 3 2-+ H 2O

растворимые основания реагируют с амфотерными оксидами и гидроксидами:

2NaOH + Al 2O 3+ 7H 2O =Na[Al(OH) 4(H 2O)]

NaOH + Al(OH)3 + 2H2O = Na[Al(OH)4(H2O)2]

растворимые основания реагирует с растворимыми солями с образованием нерастворимых оснований.

2KOH + CuSO 4= Cu(OH)2 + K 2SO 4

2K ++ 2OH -+ Cu 2++ SO 4 2-= Cu(OH) 2+ 2K+ + SO 4 2-

2OH -+ Cu 2+= Cu(OH) 2

или

KOH + NH 4Cl = KCl + NH 4OH

K ++ OH -+ NH 4 ++ Cl -= K ++ Cl -+ NH 4OH

OH –+ NH 4 += NH 4OH.

кислоты взаимодействуют с солями, если в результате реакции образуется или слабый электролит, или малорастворимое твердое, или газообразное вещество:

а) Na 2CO 3+ 2HCl = 2NaCl + H 2CO 3H 2O

2Na ++ CO 3 2-+ 2H ++ 2Cl -= 2Na ++ 2Cl + H 2CO 3

CO 3 2-+ 2H += H 2CO 3CO 2

б) AgNO 3+ HCl = AgCl + HNO 3

Ag ++ NO 3 -+ H ++ Cl -= AgCl + H ++ NO 3 -

Ag ++ Cl -= AgCl

Кроме того, существуют неорганические кислоты – сильные окислители: HNO 3, H 2SO 4(концентрированная). Эти кислоты обладают особыми свойствами, которые определяются не катионами водорода, а высокой степенью окисления атомов элемента, образующего кислоту. Эти кислоты могут реагировать и с металлами, стоящими в ряду активности после водорода (кроме золота и платины) и с неметаллами. Подробно свойства этих кислот рассматриваются во II части учебника.

H 2S – сероводородная кислота.

Название кислородсодержащей кислоты зависит от степени окисления элемента, образующего кислоту. Если элемент образует кислоту в своей максимальной степени окисления, то к названию элемента добавляют окончание -ная или –вая и слово кислота:

H 2SiO 3– кремниевая кислота,

H 2SO 4– серная кислота.

Если элемент образует две кислоты, находясь в 2-х степенях окисления, то для кислоты с максимальной степенью окисления элемента в названии будет окончание –вая или –ная; а для минимальной степени окисления окончание –истая:

HNO 3– азотная кислота, HNO 2– азотистая кислота;

H 2SO 4– серная кислота, H 2SO 3– сернистая кислота.

Если же элемент образует более, чем две кислоты, находясь в разных степенях окисления, то по мере понижения степени окисления элемента, образующего кислоту суфиксы и окончания будут меняться в следующем порядке:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Михаил Бармин читать все книги автора по порядку

Михаил Бармин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Общая и Неорганическая химия с примерами решения задач отзывы


Отзывы читателей о книге Общая и Неорганическая химия с примерами решения задач, автор: Михаил Бармин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x