Карл Андерсон - Аналитическая культура

Тут можно читать онлайн Карл Андерсон - Аналитическая культура - бесплатно ознакомительный отрывок. Жанр: Экономика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Аналитическая культура
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Карл Андерсон - Аналитическая культура краткое содержание

Аналитическая культура - описание и краткое содержание, автор Карл Андерсон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Это практическое пошаговое руководство по внедрению в вашей организации управления на основе данных. Карл Андерсон, директор по аналитике в компании Warby Parker, провел интервью с ведущими аналитиками и учеными и собрал кейсы, которые и легли в основу данной книги. Вы узнаете, какие процессы следует ввести на всех уровнях и как именно это сделать, с какими трудностями можно столкнуться на этом пути и как их преодолеть. Автор рассказывает об аналитической цепочке ценностей, которая поможет принимать правильные решения и достигать лучших бизнес-результатов.
Книга будет интересна CEO и владельцам бизнеса, менеджерам, аналитикам.

Аналитическая культура - читать онлайн бесплатно ознакомительный отрывок

Аналитическая культура - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Карл Андерсон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Во-первых, вы можете применять его для тестирования и мониторинга вашей инфраструктуры и процессов распределения. Если вы зададите настройки системы для разделения трафика 50/50, но размер выборок в двух группах будет сильно отличаться, это означает, что с вашим процессом распределения что-то не так.

Во-вторых, если при сопоставимом размере двух выборок наблюдаются сильно отличающиеся показатели деятельности, это свидетельствует о проблеме с отслеживанием событий, проблеме при проведении анализа или составлении отчетности. При этом можно ожидать уровень различий при А/А-тестировании около 5 %, сделав допущение, что вы придерживаетесь стандартного статистического уровня значимости 5 %. Что действительно нужно отслеживать при многократном проведении A/A-тестов, так это наблюдаются ли у вас значительные расхождения, на порядок больше, чем стандартный уровень значимости. Если да, это может свидетельствовать о проблеме. Однако Георгий Георгиев резонно отмечает: «Даже если вам требуется всего 500 или 100 A/A-тестов, чтобы заметить статистически значимые отклонения от ожидаемых результатов, это все равно огромная потеря денег. Просто потому, что впечатления, клики, посетители — это все не бесплатно, не говоря уже о том, как вы могли бы использовать этот трафик» [132]. Нужно проводить множество A/B-тестов и постоянно внедрять инновационные решения. Однако, если у вас нет постоянного потока A/B-тестов или возник перерыв, проводите A/A-тесты.

В-третьих, результаты тестирования можно использовать для оценки вариативности тех показателей, которые вы контролируете. В некоторых вычислениях размера выборки, таких как при тестировании среднего значения (скажем, средний размер корзины или время, проведенное на сайте), это значение понадобится для вычисления размера выборки.

Наконец, в блоге Nelio A/B Testing отмечается, что применение A/A-тестов имеет, помимо прочего, и образовательную функцию [133]. Для тех компаний, где конечные пользователи или руководители никогда раньше не имели дела с A/В-тестированием и не особо подкованы в вопросах вероятности и теории статистики, это будет весьма полезно. Не стоит торопить события и сразу переходить к A/B-тестированию, полагая, что тестируемые показатели должны быть лучше контрольных, даже когда результаты впечатляют. Статистически значимый результат может быть делом случая, и самое наглядное доказательство этого — A/A-тестирование.

Планирование A/В-теста

Рекомендация: продумайте весь ход эксперимента до его начала.

При планировании теста следует обратить внимание на многие аспекты. Тем компаниям, которые намерены внедрить у себя культуру A/В-тестирования, я рекомендовал бы заранее продумать приведенный ниже спектр вопросов. После того как вы запустите тестирование, обсуждать критерии эффективности будет поздно. Вряд ли вы захотите, чтобы кто-то подтасовывал результаты во время анализа. Этап обсуждения и всех согласований должен предшествовать этапу самого тестирования.

Цель

• В чем цель этого теста?

Зоны ответственности

• Кто представитель от бизнеса?

• Кто отвечает за реализацию тестов?

• Кто осуществляет бизнес-аналитику?

Планирование эксперимента

• Какие показатели вы планируете тестировать, а какие будут являться контрольными?

• Кто составит вашу тестовую и контрольную группы (то есть люди)?

• Каковы ваша нулевая и альтернативная гипотезы? [134]

• Какие показатели вы планируете отслеживать?

• Когда будут обсуждаться результаты и формироваться обратная связь?

• Когда начнется тестирование?

• Требуется ли время для «разогрева»? В таком случае, с какого момента пойдет отсчет эксперимента для аналитических целей?

• Сколько продлится тест?

• Как определили размер выборки?

Процесс анализа

• Кто будет проводить анализ? (В идеале должно быть разделение между теми, кто планирует эксперимент, и теми, кто оценивает результаты.)

• Какой вид анализа будет проводиться?

• Когда начнется процесс анализа?

• Когда он завершится?

• Какое программное обеспечение будет использоваться для его проведения?

Результаты

• Как будут распространяться результаты анализа?

• Как будет приниматься окончательное решение?

Список кажется довольно длинным, но по мере того как вы будете проводить все больше и больше тестов, некоторые из вопросов и ответов перейдут в разряд стандартных. Например, ответы могут быть: «При проведении анализа мы всегда используем R» или «Проведение статистического анализа входит в обязанности Сары». Этот набор вопросов станет постепенно внедряться в корпоративную культуру, процесс будет становиться все более автоматическим, пока наконец он не станет естественным и привычным.

По получившемуся у меня описанию процедура проведения эксперимента и процесс анализа — очень четкие, почти клинические и доведенные до автоматизма: тест А против теста В, какой тест выигрывает, тот и внедряется на практике. Если бы так и было, то это был бы полный процесс управления на основе данных. Но реальный мир гораздо сложнее. В игру вступают другие факторы. Во-первых, результаты не всегда четко определены. Возможна двусмысленность. Не исключено, что показатель в тестовой группе был немного завышенным на протяжении всего теста, но незначительно. Или некоторые факторы компенсировали друг друга (например, объем продаж и уровень конверсии). Или, возможно, в процессе анализа вы обнаружили фактор, способный повлиять на объективность результатов. Все это может негативно сказаться на их анализе и интерпретации. Подобная двусмысленность вполне реальна. Во-вторых, отдельный эксперимент не обязательно отражает ту долгосрочную стратегию, которой следует компания. Пи Джей Маккормик приводит пример подобной ситуации на Amazon [135]. Он описывает A/B-тест, в котором в качестве контрольного элемента выступало крошечное изображение покупаемого продукта, настолько маленькое, что его было невозможно рассмотреть. В качестве тестируемого элемента было более крупное изображение продукта. Казалось бы, результат теста очевиден. Но не все так просто: маленькое изображение, по которому даже не было понятно, на что кликает пользователь, победило! Тем не менее в компании приняли решение перейти на размер изображения крупнее. Почему?

«Мы запустили более крупные изображения, потому что так пользователи видят, что они покупают. Это более положительный опыт. Кроме того, это совпадает с тем, к чему мы стремимся в долгосрочной перспективе, и с нашим в и дением. Данные не мыслят в долгосрочной перспективе за вас. Они не принимают решения. Они лишь дают информацию — пищу для размышлений. Но если вы принимаете решения автоматически, не задумываясь о том, что означают эти данные, и не соотнося их с вашим долгосрочным видением относительно вашего продукта или пользователей, то, скорее всего, ваши решения будут ошибочными» [136].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Карл Андерсон читать все книги автора по порядку

Карл Андерсон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Аналитическая культура отзывы


Отзывы читателей о книге Аналитическая культура, автор: Карл Андерсон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x