Карл Андерсон - Аналитическая культура

Тут можно читать онлайн Карл Андерсон - Аналитическая культура - бесплатно ознакомительный отрывок. Жанр: Экономика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Аналитическая культура
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Карл Андерсон - Аналитическая культура краткое содержание

Аналитическая культура - описание и краткое содержание, автор Карл Андерсон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Это практическое пошаговое руководство по внедрению в вашей организации управления на основе данных. Карл Андерсон, директор по аналитике в компании Warby Parker, провел интервью с ведущими аналитиками и учеными и собрал кейсы, которые и легли в основу данной книги. Вы узнаете, какие процессы следует ввести на всех уровнях и как именно это сделать, с какими трудностями можно столкнуться на этом пути и как их преодолеть. Автор рассказывает об аналитической цепочке ценностей, которая поможет принимать правильные решения и достигать лучших бизнес-результатов.
Книга будет интересна CEO и владельцам бизнеса, менеджерам, аналитикам.

Аналитическая культура - читать онлайн бесплатно ознакомительный отрывок

Аналитическая культура - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Карл Андерсон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, мы определили размер выборки и продолжительность тестирования. Или не совсем? Если вы проводите тестирование в течение четырех дней с понедельника по четверг, получите ли вы те же самые демографические и поведенческие характеристики пользователей, которые получили бы, проводи вы тестирование с пятницы по понедельник? В большинстве случаев они будут различаться. Это «эффект дня недели» в действии: пользователи, посещающие сайт в выходные, и их поведение отличаются от тех, что посещают сайт в другие дни. Таким образом, если согласно калькулятору размера выборки тестирование рекомендуется проводить в течение четырех дней, лучше продлите его еще на три дня, чтобы охватить неделю полностью. Если рекомендуемая продолжительность тестирования — 25 дней, проводите его в течение четырех недель.

Как видите, определение размера выборки — важный аспект. Если вы захотите обойтись выборкой меньшего размера, чем необходимо, то, скорее всего, получите ложные результаты: они будут указывать на наличие положительного эффекта, но не смогут генерировать дополнительную прибыль. Или, наоборот, вам не удастся определить наличие эффекта от тестируемой характеристики и вы столкнетесь с упущенной выгодой. Очевидно, оба этих варианта развития ситуации нежелательны. Наконец, расчеты размера выборки иногда бывают сложными, и для качественной оценки без калькулятора не обойтись. Воспользуйтесь имеющимися у вас инструментами.

ПРОВЕДЕНИЕ ТЕСТИРОВАНИЯ

После того как вы определили тестируемую характеристику и настроили на сайте инструменты для сбора необходимых данных, переходим к следующим вопросам: кто будет участвовать в тестировании, когда оно начнется и когда завершится?

Выбор участников тестирования

Рекомендация: предложите оценить тестируемую характеристику 50 % пользователей, отвечающих критериям отбора, и обеспечьте стабильность процесса.

Первый вопрос, возникающий при выборе участников тестирования, — это критерии отбора. Возможно, некоторые пользователи не должны принимать участие в тестировании вообще. Во многих случаях при проведении А/В-тестирования ориентируются на всех посетителей сайта. Но вполне возможно, что вас интересует только конкретная категория посетителей, например только те, кто совершает повторные покупки, или пользователи из конкретного региона или с определенными демографическими характеристиками. Все зависит от тестируемой характеристики и целевой аудитории. Критерии отбора должны быть четко определены.

Эта выборка пользователей представляет совокупность всех участников тестирования, которых можно разделить на две группы — контрольную и тестовую. Следующий вопрос: в каком соотношении формировать группы? В идеале совокупный трафик следует разделить 50/50, но так получается не всегда. Кохави и др. отмечают, что «распространенная практика среди новичков, которые только начинают проводить подобные эксперименты, — предложить протестировать новую характеристику лишь небольшому проценту пользователей» [140]. Вероятно, они поступают так, чтобы избежать риска и снизить негативное влияние, если с новой характеристикой возникнут проблемы. Однако это плохая стратегия, так как тогда проведение тестирования займет больше времени. Тестирование должно пройти для минимального размера выборки для обеих групп — контрольной и тестовой, поэтому, если трафик в тестовой группе снижен, например, до 10 %, очевидно, что потребуется гораздо больше времени, пока размер выборки тестовой группы достигнет требуемого. В этом случае рекомендуется, наоборот, «усилить» эксперимент, повысив пропорцию трафика в тестовой группе (подробнее мы коснемся этого чуть позже), чтобы снизить риск, но достигнуть трафика в 50 %.

Необходим надежный механизм распределения посетителей сайта в контрольную или тестовую группу. То есть необходимо сделать это случайным образом, но системно. При рекомендованном делении 50/50 у пользователя должна быть одинаковая вероятность оказаться в любой из двух групп. Один из подходов заключается в применении генератора случайных чисел, назначении пользователям их группы и сохранении этого варианта в определенной базе данных или, возможно, в куки-файле. На основании этой информации пользовательский интерфейс (UI) в дальнейшем будет отображать тот вариант сайта, который нужно для этой группы. Этот подход хорошо работает для сайтов, где все пользователи аутентифицированы. Другой подход состоит в спонтанном распределении пользователей по двум группам. При этом важно, чтобы при повторном возвращении на сайт пользователь системно попадал в одну и ту же группу, поэтому здесь необходим четко определенный процесс распределения пользователей. Например, можно применить мод или подходящую функцию хеширования (расстановки ключей) к каждому ID пользователя. (Кохави и др. подробно обсуждают разные протоколы для системного распределения.) Обеспечение стабильного опыта для пользователя имеет важное значение. Если он будет видеть разные версии сайта, это может привести его в замешательство и повлиять на качество данных и их анализа.

Впрочем, некоторое замешательство может возникнуть в любом случае. Представьте постоянного пользователя, который попал в тестовую группу и в первый раз увидел модифицированную версию сайта. У него есть определенные ожидания, сформировавшиеся после предыдущего посещения сайта, и, чтобы осмыслить новый опыт, ему потребуется какое-то время. У пользователя, который посещает сайт в первый раз, еще нет сформированных ожиданий, поэтому ему может быть легче сразу во всем разобраться. Так называемый эффект первичности может быть довольно значительным, и его следует учитывать при проведении анализа данных.

Начало тестирования

Рекомендация: постепенно наращивайте количество пользователей в тестовой группе до 50 % от совокупной выборки.

В начале эксперимента можете сразу направить 50 % трафика в тестовую группу. Сложность заключается в том, что, если закралась ошибка, в результате которой половина ваших пользователей получила негативный опыт, то вы можете просто потерять эту половину пользователей. Вместо этого можно попробовать другой подход: постепенно наращивать количество пользователей в тестовой группе и тщательно контролировать показатели. Рон Кохави предлагает следующую схему [141]:

• 1 % пользователей направляется в тестовую группу на четыре часа;

• 5 % пользователей направляются в тестовую группу на четыре часа (то есть перевод дополнительных 4 % пользователей из контрольной группы в тестовую);

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Карл Андерсон читать все книги автора по порядку

Карл Андерсон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Аналитическая культура отзывы


Отзывы читателей о книге Аналитическая культура, автор: Карл Андерсон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x