Карл Андерсон - Аналитическая культура
- Название:Аналитическая культура
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Андерсон - Аналитическая культура краткое содержание
Книга будет интересна CEO и владельцам бизнеса, менеджерам, аналитикам.
Аналитическая культура - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Компания Netflix предлагает интересную возможность в панели настроек пользователя. Пользователь может отказаться от участия в A/B-тестировании (рис. 12.1). Я никогда не видел подобного у других сервисов.

Рис. 12.1. Netflix ( https://www.netflix.com/ru/) предлагает пользователям отказаться от участия в A/B-тестах в настройках своей учетной записи
Здесь налицо конфликт интересов. Компания поступает справедливо, предоставляя выбор пользователям. При этом Netflix активно проводит A/B-тестирования. Чтобы как можно быстрее получить данные A/B тестов, на основе которых можно сделать обоснованные заключения, требуется большая выборка. Отказ пользователей от участия в A/B тестах уменьшает размер выборки, увеличивает время проведения тестов и, возможно, влияет на объективность выборки.
Однако смею выдвинуть предположение, что только очень малая часть пользователей применила эту опцию. Если я прав, то подписчики только выиграли от этого (они могут отказаться от участия в экспериментах, если у них возникли сомнения), а низкий уровень отказа практически не влияет на результаты тестирования и на компанию в целом. В этой ситуации компания Netflix заработала себе хорошую репутацию и почти ничего не потеряла. В этом с нее можно брать пример.
Качество данных
Один из основных принципов защиты персональных данных Федеральной комиссии по торговле — доступ/участие, то есть возможность для пользователя видеть, какая информация о нем хранится в базе данных организации, и возможность подтвердить ее или исправить.
На мой взгляд, это, вероятно, один из наименее проработанных из пяти принципов. Большинство онлайн-сервисов обеспечивают пользователям возможность редактировать информацию профиля и обновлять данные об адресе пользователя, адресе его электронной почты и другую идентифицирующую пользователя информацию. Некоторые организации, особенно социальные сети, позволяют экспортировать архивы данных (например, Twitter и Facebook). Что в большинстве случаев сделать невозможно, так это отредактировать все предшествующие данные, например предыдущие заказы, или просмотреть все «сопутствующие» данные, которые организация о вас собрала (например, из переписи населения США, единой базы недвижимости, от компаний, торгующих данными, из социальных сетей и так далее). Откровенно говоря, это сложно обеспечить. Кроме того, пользователям было бы сложно понять разрозненные записи баз данных. Это могло бы нарушить соглашения относительно данных, приобретенных у других организаций, и, возможно, выдало бы некоторые секреты внутренней кухни компании. Так что я не наблюдаю значительного прогресса в этой области.
Хотя компании с управлением на основе данных, конечно, должны сделать максимально простым процесс обзора и исправления основной информации о пользователях. Это отвечает интересам как пользователей, так и компаний. При наличии данных из разных внутренних источников, например из заявки на кредит и информации по текущему счету в том же банке, есть вероятность привязать одного клиента к идентифицирующей информации другого клиента или внести небольшие изменения в данные на разных этапах ввода (например, «улица» вместо «ул.» или «кв. 6» вместо «№ 6»). Чем проще будет исправить и стандартизировать данные о пользователях, тем эффективнее окажется работа компании на основе данных.
Если бы вы увидели мою учетную запись в Netflix, то получили бы крайне приблизительное представление о моих предпочтениях. Вы увидели бы рекомендации относительно очень разных телесериалов, таких как The Magic School Bus, Gilmore Girls и M*A*S*H [261]. Это создает не совсем верное представление о том, что смотрю лично я. Все дело в том, что этой учетной записью пользуются все члены моей семьи, а потому просмотры и последующие рекомендации фактически сделаны для нас четверых, а не для меня одного. И если у компании Netflix есть концепция профиля, которая помогает выделить таких множественных пользователей, эта функция недоступна на устройстве, с которого я пользуюсь этим сервисом.
Обеспечьте пользователям возможность предложить дополнительный контекст относительно своих данных, который сможет оказать влияние на то, как компания оценивает или использует эту информацию. Например, интернет-магазин Amazon предлагает функцию «Улучшить рекомендации» (Improve Your Recommendations), где пользователь может указать, что какой-то из товаров он приобретал в подарок или что товар не следует использовать при формировании рекомендаций. Пользователь может не хотеть, чтобы какой-то товар использовался при формировании рекомендаций и чтобы ему показывали список похожих товаров в будущем, по многим причинам, в том числе потому что это может поставить его в неловкое положение. Тем не менее, какими бы ни были эти причины, предлагая пользователю возможность исправить, отфильтровать или исключить какую-то информацию, компания получает более точное представление о намерениях пользователя, контексте или его предпочтениях. Этот принцип действует и в обратном направлении: возможно, пользователь почувствует себя более уверенно, если получит информацию, почему ему была предложена подобная рекомендация. Например, в своей учетной записи Netflix я недавно увидел рекомендацию обратить внимание на телесериал «Частный детектив Магнум», «потому что вы смотрели M*A*S*H». Эта рекомендация имеет смысл. Такое объяснение также сможет выявить неточную информацию, которую пользователь хотел бы исключить или исправить.
Итак, благодаря добавлению подобных функций компания может стимулировать двусторонний диалог между собой и пользователем, что приведет к получению более точных данных и контекста и, в конце концов, к предоставлению пользователям более качественного сервиса.
Безопасность
Ранее я упоминал, что меры по снижению риска часто способны ограничить деятельность гораздо больше, чем требуется законодательно. Почему так происходит?
Начнем с простого примера. У многих специалистов по работе с данными, например технических специалистов и администраторов баз данных, имеется доступ к сырым данным о пользователях. Эти данные могут включать имя, адрес, номер телефона, электронную почту и другую информацию, идентифицирующую человека. Закон это разрешает. Такой доступ им предоставляется потому, что они выполняют свои функциональные обязанности, обеспечивая правильный сбор и хранение данных, чтобы организация могла выполнять свои обязательства по деловым сделкам.
Теперь представим специалиста по анализу, который должен проанализировать количество проданных единиц товара в разные дни. Законодательно ничего не мешает этому аналитику получить доступ к сырым данным о пользователях. Однако действительно ли ему требуется такой уровень детализации? Требуется ли ему доступ к этим данным для проведения своего анализа? Фактически ему не обязательно знать, что набор садовой мебели заказала именно Белинда Смит, проживающая по такому-то адресу, с таким-то номером телефона и адресом электронной почты. Все, что нужно знать этому аналитику, — то, что торговая единица 123456 была продана в определенный день.
Читать дальшеИнтервал:
Закладка: