Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики

Тут можно читать онлайн Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - бесплатно ознакомительный отрывок. Жанр: Личные финансы, издательство Array Литагент «Альпина», год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Альпина»
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-9614-4132-1
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики краткое содержание

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - описание и краткое содержание, автор Билл Фрэнкс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Еще несколько лет назад руководители многих организаций, чей бизнес генерирует большие объемы операционных данных, сомневались в ценности подхода Big Data. Сегодня те из них, кто продолжает сомневаться, упускают непрерывно растущие возможности этого подхода, повышая риск потери доли рынка и перехода в разряд отстающих и устаревающих. Но с чего начать, если вы хотите вывести свою организацию на новый научно-технологический уровень, к принятию решений с использованием Big Data? Ответ на это дает Билл Фрэнкс, директор по аналитике компании Teradata и преподаватель Международного института аналитики, за плечами которого – более чем 20-летний опыт работы в крупных аналитических проектах реального бизнеса. «Революция в аналитике» – это пошаговое практическое руководство по внедрению операционной аналитики и автоматизации принятия решений. Специалисты по аналитике, ИТ и все, кто хочет сделать свою организацию успешнее на основе подхода Big Data, по достоинству оценят работу Фрэнкса.

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - читать онлайн бесплатно ознакомительный отрывок

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Билл Фрэнкс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как насчет облака?

Читатели, безусловно, знакомы с концепцией облака и облачных архитектур, поэтому я не стану давать здесь базовых определений, а остановлюсь на нескольких ключевых моментах, важных в контексте нашего разговора об операционной аналитике. Меня часто спрашивают по поводу использования облака для аналитических процессов, как операционных, так и неоперационных. Чтобы ответить на этот вопрос, важно провести различие между облачными архитектурами и облачными услугами.

Организации могут внедрить облачную архитектуру на собственном оборудовании под защитой своих брандмауэров. Это частное облако позволит обеспечить эффективное совместное использование ресурсов без какого-либо внешнего вмешательства и потери контроля над данными. Другой вариант – аренда пространства на общедоступном облаке у внешнего поставщика облачных услуг. В этом случае организация платит поставщику только за используемые ею оборудование и ресурсы (включая маржу прибыли для поставщика).

Для малого бизнеса или исследователей, которые обычно используют лишь небольшую часть ресурсов сервера, общедоступное облако может быть очень выгодным вариантом, даже несмотря на надбавку к цене со стороны поставщика. У крупных же организаций, использующих большие данные и операционную аналитику, обычно так много пользователей, использующих так много данных, что общедоступное облако в конечном счете может обойтись им гораздо дороже, чем частное. Например, если организация использует вычислительную мощность 20 серверов практически беспрерывно, то аренда ресурсов обойдется ей намного дороже, чем владение собственными. Кроме того, использование общедоступного облака для уязвимых данных поднимает вопросы, связанные с безопасностью и соблюдением конфиденциальности. Эти вопросы могут носить правовой характер или же касаться восприятия: так, многие потребители могут чувствовать себя некомфортно, если компания будет хранить их персональные данные на общедоступном облаке.

Использовать облако или нет?

Частное облачное окружение – это чрезвычайно мощная и экономически эффективная архитектура, к которой прибегнут многие организации. Общедоступные облака могут оказаться дорогостоящими для крупных организаций, поэтому вряд ли будут широко использоваться для целей операционной аналитики, как это сегодня рекламируется на рынке. Все опоры и вспомогательные технологии, рассмотренные нами в этой главе, могут работать в облачной архитектуре.

Сегодня многие поставщики предлагают аналитику в виде сервисных пакетов на базе общедоступного облака. Эти приложения позволяют пользователям создавать и осуществлять аналитические процессы с помощью инструментов, которые предлагаются по подписке или на основе платы по мере пользования. Многие, но не все, аналитические сервисные продукты могут быть юридически закреплены за организацией и присоединены к частному облаку. Прежде чем тратить время на оценку конкретного аналитического метода в качестве сервисного продукта, убедитесь в том, что он подходит для вашего запланированного окружения. Например, если вашей организации не разрешено использовать общедоступные облака, вряд ли имеет смысл рассматривать продукты, доступные только там.

Частное и безопасное облачное окружение способно обеспечить гибкость, необходимую для превращения аналитики в операционную, а также хорошую рентабельность. Вместо того чтобы иметь на 15 отделов один сервер, который к тому же часто простаивает или недостаточно используется, можно иметь пять серверов, которые с лихвой удовлетворят потребности всех отделов. Это позволит снизить затраты на обслуживание и административные накладные расходы. В ближайшие несколько лет внутренние частные облачные архитектуры получат широкое распространение повсеместно и будут применяться для поддержки многих операционно-аналитических процессов.

Что же касается общедоступных облаков и аналитики в качестве предложений сервиса, то они в основном будут привлекать малый и средний бизнес, а также крупные организации для исследований на начальных этапах.

Подведем итоги

Наиболее важные положения этой главы:

• Превращение традиционной аналитики в операционную – это не технологическая проблема для большинства организаций. Проблемы с технологиями являются симптомами фундаментальных проблем с корпоративной политикой или культурой.

• Новые технологии, например Hadoop, не заменяют ранее существовавшие технологии, такие как реляционные базы данных, а дополняют их.

• Аналитическое окружение развивается, объединяя много платформ разной мощности, каждая их которых предназначена для решения разных задач.

• Не откладывайте решение об инвестициях в ожидании выхода новых продуктов с новыми функциями, если только эти функции не имеют для вас крайне важного значения.

• Компьютинг на основе текстуры ведет к созданию единого аналитического окружения, которое включает множество взаимосвязанных, масштабируемых и интегрированных компонентов.

• Современное единое аналитическое окружение покоится на трех основных опорах и ряде вспомогательных технологий. Цель его – позволить осуществлять любой тип анализа с использованием любых данных любого типа и объема в любое время.

• Реляционная опора является основой для развертывания операционной аналитики и обеспечивает масштабируемость по всем ключевым для организации параметрам.

• Опора для обнаружения данных предназначена для исследования всех видов данных при помощи любых аналитических методов и призвана быстро обеспечивать нахождение новых инсайтов, а не максимальную скорость обработки.

• Нереляционная опора (как правило, Hadoop) превосходно подходит для работы с нетрадиционными форматами данных, для хранения малоценных и редко используемых данных, а также для целей архивирования.

• Вспомогательные технологии, позволяющие применять специфические типы обработки, включают технологии аналитики в памяти, технологии на основе графических процессоров, встроенные аналитические библиотеки и технологии обработки сложных событий.

• Пользователи не желают знать, где физически находятся данные или что именно их обрабатывает. Единое аналитическое окружение развивается, так что пользователям не придется больше беспокоиться насчет этих вопросов.

• Облачные архитектуры могут быть использованы в едином аналитическом окружении. Для большинства крупных организаций частные облака будут предпочтительнее публичных.

Глава 6

Управление и конфиденциальность

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Билл Фрэнкс читать все книги автора по порядку

Билл Фрэнкс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики отзывы


Отзывы читателей о книге Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики, автор: Билл Фрэнкс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x