Саманта Клейнберг - Почему
- Название:Почему
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2017
- Город:Москва
- ISBN:978-5-00100-593-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Саманта Клейнберг - Почему краткое содержание
Книга будет интересна аналитикам, философам, исследователям, медикам, экономистам, юристам, начинающим ученым, всем, кто имеет дело с массивами данных и хочет научиться критическому мышлению.
На русском языке публикуется впервые.
Почему - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Если мы будем объяснять более конкретно, это также может разрешить проблему кажущегося избыточного детерминизма. В рассмотренных ситуациях мы трактовали все примеры – скажем, смерти – как события одного типа. Мы не проводили различия между гибелью в ДТП в 2 часа дня и кончиной от отравления в 10 часов вечера. При условии, однако, что летальный исход все равно наступит, если подождать достаточно долго, мы уже принимаем во внимание, что он случится так или иначе, просто нечто может стать причиной раннего или позднего наступления.
Одна из поправок к контрфактуальному методу – исходить не просто из того, мог ли случиться тот или иной итог, а рассудить, мог ли он быть иным. Жертва в этом примере умерла бы иначе и в другое время, если бы не побежала через дорогу, а яд подействовал [322]. Вот таким образом мы можем искать причины ситуаций, которые в противном случае казались бы сверхдетерминированными.
Если бы мы захотели узнать, почему в последнем примере герой умер, мы могли бы поинтересоваться, почему погиб именно он, а не какой-нибудь другой преступник, почему авария была с летальным исходом или почему это произошло именно в тот день, а не в другой.
То есть, даже если нам удается решить проблему сверхдетерминированности, нужно учитывать, что два человека, использующие одинаковый подход, могут прийти к разным определениям причинности. Точно так же, как выбор того, что измерять и как это описывать (например, вес или индекс массы тела), может изменить логические умозаключения на уровне типа и трансформировать объяснения на уровне конкретики.
Помимо выбора переменных есть дополнительная трудность: необходимо определить, что присутствует, а чего нет.
Вы могли бы заявить, что езда в автомобиле пьяным или трезвым – это факт либо истинный, либо ложный и, как и в отношении причинных зависимостей, есть данные, позволяющие судить об истинности этого факта. Но существуют разные степени опьянения. Это как один посещает концерт громкой музыки раз в год, а другой играет в рок-группе или ходит на подобные концерты раз в неделю: они подвержены разным рискам потери слуха. Между влиянием этого фактора на объяснение и причинное осмысление разница в том, что в последнем случае на основе данных мы определяем набор переменных (например, переводим вес и рост в индекс массы тела) и выводим зависимости между ними.
В случае с токенами мы прилагаем соответствующий сценарий к имеющемуся типовому знанию. Пусть предыдущее исследование выявило, что люди, которые много упражняются, имеют низкую частоту сердечных сокращений [323]: теперь мы хотим знать, объясняют ли занятия спортом низкую ЧСС у Трейси. Если повезет, в первичном изучении будет указано, как долго человек должен упражняться (например, 6 раз в неделю по 30 минут), чтобы частота сердечных сокращений понизилась. Но это все равно будет субъективным мнением. Окажется ли такая зависимость истинной, если упражняться более трех месяцев? Можно ли сказать, что любые виды занятий дают идентичный эффект или йогу и плавание нужно оценивать по-разному? Имеет ли значение, что Трейси упражняется только в теплую погоду, а не всю зиму напролет?
Я упоминаю о сопоставлении наблюдений на уровнях токена и типа, поскольку не всегда очевидна субъективность в определении произошедшего [324].
Люди могут задавать разные вопросы о некоем событии и считать какие-то факторы более ярко выраженными (вероятно, исходя из того, что они способны контролировать), но это не изменяет фактического вклада каждого компонента в общую ситуацию. Например, на получение Нобелевской премии влияют многие вещи: усердный труд, везение, изучение наук с раннего детства, а может, и потребление шоколада, как говорилось в той статье, с которой мы знакомились ранее. Если некто сосредоточивается на том, чтобы изучить связь между Нобелевской премией и шоколадом, это изменяет лишь задаваемые вопросы, но не реальный факт, а именно: правда ли шоколад повлиял на исход дела сильнее, чем везение. Но, когда мы пытаемся автоматизировать объяснение, приходится отказываться от субъективных суждений и определять, какие свойства более важны. Чтобы истолковать последствия повторяющегося воздействия громкого шума, нужно знать историю жизни человека, поэтому нам понадобятся сведения о количестве посещенных концертов за неделю, а также подвергается ли он воздействию шума на работе или живет рядом со стройкой.
Мы исходим из следующего допущения: если причиной ДТП явилось нетрезвое вождение, на момент катастрофы водитель был пьян. В другом случае, говоря об инфекциях с длительным инкубационным периодом, мы допускаем, что некогда было воздействие вируса. Заразиться гриппом от человека, с которым вы обедали год назад, совершенно невероятно, но точно так же нельзя заболеть через минуту после того, как вы сели за стол с носителем инфекции.
Очередная трудность при переводе объяснения с уровня типа на токен-причины – временной паттерн. Даже если информация на уровне типа, которой мы располагаем, не сообщает, сколько времени нужно для получения следствия, мы все равно не сможем обойтись без учета фактора времени, так как он влияет на релевантность информации по отношению к конкретному случаю. Если мы вообще ничего не знаем о временн о м паттерне, необходима некая степень суждения, чтобы определить истинность чего-либо. То есть, если мы пытаемся выяснить, действительно ли контакт с носителем вируса вызвал заболевание гриппа у конкретного лица, нам важно знать, когда произошел контакт, чтобы определить, мог ли он стать причиной заболевания именно в тот момент.
Некоторые методы причинных умозаключений предусматривают временн ы е интервалы, или окна, поэтому мы узнаем, например, что заражение полиомиелитом может вызвать постполиосиндром [325]через 15 лет после выздоровления [326]. Наличие информации такого рода снимает необходимость в суждениях о времени, так как не требуется спорить, вызваны ли симптомы заболевания постполиосиндромом, если они обнаруживаются всего через несколько месяцев после выздоровления. Если человек болел полиомиелитом в пределах известного временн о го интервала, тогда это истинно для токен-случая, который мы стараемся объяснить, и два человека, имеющие одинаковые данные, должны прийти к одинаковому выводу: стал ли известный диагноз потенциальным объяснением симптоматики пациента.
Но, как обычно, это еще не конец. Скажем, мы обнаружили, что некое лекарство снимает головную боль за 30–60 минут. У Чарли болит голова, он принимает лекарство и через 62 минуты чувствует себя лучше. Помогло ли лекарство снять боль? Хотя 62 минуты выбиваются из известного нам временн о го окошка в 30–60 минут, вряд ли стоит жестко утверждать, что лекарство не сняло проблему, потому что временн о й паттерн не показывает идеального соответствия. Причина в том, что наши знания о действии препаратов от головной боли и опыте их применения делают неправдоподобной возможность того, что лекарство действует лишь в пределах тридцатиминутного окошка. То есть через 29 минут оно еще не действует, а по прошествии 30 минут сразу приобретает активность. Да, возможно, временн о е окно – первостепенный интервал, в рамках которого причина активна, но это не означает, что следствие не может случиться вне этого интервала; просто это менее вероятно. С другой стороны, лихорадка денге [327]может развиться внезапно, и, взяв за основу многолетние данные по инфицированию, мы можем выявить минимальные и максимальные инкубационные периоды, которые когда-либо наблюдались. В этом случае гораздо выше наша уверенность, что инфицирование нельзя вызвать контактом вне соответствующего временн о го паттерна.
Читать дальшеИнтервал:
Закладка: