Саманта Клейнберг - Почему
- Название:Почему
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2017
- Город:Москва
- ISBN:978-5-00100-593-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Саманта Клейнберг - Почему краткое содержание
Книга будет интересна аналитикам, философам, исследователям, медикам, экономистам, юристам, начинающим ученым, всем, кто имеет дело с массивами данных и хочет научиться критическому мышлению.
На русском языке публикуется впервые.
Почему - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вместо того чтобы субъективно определять, относится ли ситуация к случаям знания на уровне типа, мы получаем более структурированный метод, сочетающий тип и токен.
Но что, если мы не знаем наверняка, пила ли Ирен эспрессо? Известно, что она встречалась в кофейне с подругой, и хотя она обычно пьет много кофе, иногда выбирает напиток без кофеина. Не зная непосредственно, имела место причина или нет, мы можем воспользоваться другой информацией, вычислить вероятность причины и заново взвесить значимость сведений на уровне типа.
Итак, если причина точно была, ее значимость будет одинакова как на уровне типа, так и на уровне токена. С другой стороны, если токен-причина несколько невероятна, принимая в расчет наши наблюдения, ее значимость соответственно снижается.
Есть набор причин и последовательность событий, которые мы наблюдали, и, чтобы определить значимость различных гипотез, мы их комбинируем [331]. То есть результатом будет не бинарное утверждение «это стало (или не стало) причиной того», но ранжирование потенциальных причин, как показано на рис. 8.4. Мы получим ряд возможных каузальных объяснений следствия, и измерение значимости каждого из них будет представлять из себя комбинированное значение « тип-токен », показывая, насколько точен временн о й паттерн и с какой долей вероятности каждая из причин могла случиться в указанные временн ы е интервалы. В отличие от других подходов, здесь необязательно иметь полное знание об истинности/ложности переменных, а временн ы е паттерны на уровне токена могут отличаться от таких же на уровне типа, позволяя эффективнее разбираться с ситуациями каузальных цепочек и сверхдетерминированности.

Рис. 8.4.Пример объяснения бессонницы методом комбинирования взаимосвязей на уровне типа с информацией на уровне токена с ранжированием причин
Разделение типа и токена
Скажем, мы выявили набор факторов, определяющих результативность в баскетболе. Когда однажды в субботу днем во время матча игрок бросает мяч, все факторы наличествуют, однако в последнюю минуту он пролетает мимо сетки, потому что случается землетрясение. Таким образом, имеют место все факторы, которые должны обеспечить попадание мяча в корзину, но этого не происходит. Условия не стали причиной гола (потому что его не было), но, если не брать в расчет землетрясение, другие факторы также не могли стать причиной того, что игрок промазал.
Заметим, что до сих пор мы в основном сосредоточивались на объяснениях, почему произошли события, которые на самом деле произошли . В психологической литературе (см. главу 2) приводится курьезный постулат: людям можно поставить в вину то, чего в действительности не было. Кого-то обвиняют в попытке совершения убийства, а студент, пробовавший списать на экзамене, все равно виновен, даже если его дерзание провалилось.
Если кто-то не полил цветок, а растение все равно выжило, как это можно объяснить? Здесь мы привлекаем внимание к тому, что цветок должен был завянуть, но в реальности не погиб. Отсутствие воды предшествовало, но не стало причиной выживания. Шансы цветка начали снижаться с первого дня, когда он перестал получать воду, и продолжали таять с течением времени. Интуитивно можно понять: когда нечто случается даже при свершении события, снижающего его вероятность, это нечто случается несмотря на , а не в результате этого события. Аналогично, если нечто не произошло несмотря на некое событие, повысившее его вероятность, оно также не произошло, несмотря на событие. К примеру, пациент умер, несмотря на отличный медицинский уход.
Скажем, Адам и Бетти больны гриппом. За неделю до того у Адама был обед с Клер, а та заболевает гриппом через день после второго обеда, с Бетти. Шансы на то, что Клер заболеет гриппом, росли после ее встречи с Адамом, но потом стали снижаться, когда наступил инкубационный период. Они возросли снова после обеда с Бетти и оставались высокими, пока та на самом деле не заболела. Это показано на рис. 8.5.

Рис. 8.5.Вероятность гриппа с течением времени. Шанс растет после первого обеда и снижается до второго. После второго контакта вероятность растет то того, пока человек действительно не заболевает гриппом
Несмотря на то что перед нами два примера причины-типа (контакт с носителем гриппа), мы видим, что здесь нет сверхдетерминированности, поскольку только один контакт стал причиной болезни. В предыдущем разделе мы разбирались с подобной ситуацией с помощью временн ы х паттернов на уровне типа. Этот подход имеет отличия, поскольку здесь мы анализируем изменение вероятности на уровне токена. Это также поможет разобраться со случаями, где токен-вероятность отличается от вероятности-типа.
Известно, что вакцины в целом предотвращают летальный исход, но в некоторых редких случаях становятся его причиной; конкретное растение может погибнуть, если его полить кофе, даже если никакое другое растение от этого не погибало; можно возложить вину на человека, попытавшегося совершить убийство, даже если потенциальная жертва выжила. Ключевое ограничение в следующем: исходя из общей информации для объяснения конкретных случаев, мы допускаем, что значимость на уровне типа равна значимости на уровне токена .
Этот подход – посмотреть, как вероятность события меняется после наступления причины и как меняется со временем, – предложил философ Эллери Иллс [332]. Проблема гораздо шире, чем наши возможности ее рассмотрения на этих страницах, однако суть подхода в том, что единичные вероятности трактуются иначе, чем общие, и в основе лежит изменение вероятности реального события с течением времени .
Использование вероятностей единичного случая, который мы пытаемся объяснить, означает, что мы можем провести различие между тем, что случается как правило , и тем, что случилось в действительности . Здесь по-прежнему учитывается причина, обычно предшествующая событию и влекущая его за собой.
Немаловажно, что при этом мы можем обновить аналитические выводы, приведя их в соответствие с тем, что наблюдаем. В одном из примеров Иллса озорные белки любили отталкивать мячи для гольфа от лунок, но однажды зверек помог игроку, направив мяч прямо в лунку. Если применить метод, основанный на вероятностях уровня типа, то, даже если мы в действительности видим, что траектория мяча делает попадание все более и более вероятным, и наблюдаем, как меняется его путь после того, как по нему ударили, мы все равно не сможем откорректировать уже имеющееся знание на уровне типа, чтобы учесть новые данные. И это приведет к получению не связанных между собой и контринтуитивных результатов.
Читать дальшеИнтервал:
Закладка: