Никита Сергеев - Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…

Тут можно читать онлайн Никита Сергеев - Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… - бесплатно ознакомительный отрывок. Жанр: О бизнесе популярно. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005007346
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Никита Сергеев - Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… краткое содержание

Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… - описание и краткое содержание, автор Никита Сергеев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Когда люди не инженерных специальностей слышат «аналитика и Data Science», то представляют разное. Кто-то видит таблицы и графики. Кто-то неподъемно сложные математические формулы. Кто-то программирование и искусственный интеллект…Но истоки этих понятий из области статистики, которая делится на описательную и аналитическую.И эта кажущаяся непостижимой аналитика – на самом деле нескучная, интересная и простая вещь. Чтобы ею пользоваться, не нужно ни изучение сложных формул, ни программирования…

Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… - читать онлайн бесплатно ознакомительный отрывок

Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Никита Сергеев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В интернете есть ряд официальных инструкций, курсов, книг и самоучителей по той или иной аналитической программной среде (какие кнопки нажимать, где находится та или иная функция, где смотреть вывод результатов и т.д.).

Но главное – понимать, что все эти программы не заменители «головы» аналитика.

Это всего лишь инструментарий. Но, невзирая вроде на эту понятную истину, постоянно разворачиваются баталии на тему «какая программа лучше». Всегда хочется спросить о критерии «лучшести» – ведь каждая программа имеет свои плюсы и минусы, возможности и ограничения.

Решение об использовании той или иной программной среды – это на самом деле исключительно вопрос профессиональных и личных предпочтений.

Я, например, в своей практике использую несколько инструментов: подавляющая часть того, что я делаю, сделана в SPSS, ОСА и Excel.

SPSS и ОСА – поскольку привык ими пользоваться. Excel – потому, что удобен для бизнеса и его может открыть, просмотреть и отследить логику формул любой бизнес-пользователь.

Для некоторых задач использую R. Но с языков программирования я бы не рекомендовал начинать не-техническим профессионалам. Это дольше, сложнее, да и вряд ли Вы в своей работе столкнетесь с настолько емкими задачами, чтобы не решить их более простым способом.

Потому, что использовать – больше будет зависеть от того, что Вы решите и осилите освоить. Однозначно в бизнесе (за исключением, если Вы профессиональный аналитик и это Ваша ежедневная работа) самым ходовым инструментом является Excel. Бизнес – это клеточки Excel.

Потому и в данной книге вначале будет показана реализация описательных статистик в Excel, чтобы Вы могли применять эти навыки в знакомом офисном приложении. Но по мере усложнения методов и уровня аналитики мы перейдем на PSPP (аналог-заменитель SPSS).

При обучении прикладному инструментарию для нас с Вами критерием «лучшести» является простота и привычность. Чтобы читатели тратили время не на изучение программы, а фокусировались на сути решаемых задач.

И мой выбор для начинающих и не-инженерных профессий – однозначно Excel и PSPP. Но не просто читайте разделы и главы, а после прочтения сходу отрабатывайте методы в этих программах на Ваших массивах.

Упоминая Excel, не хочу сформировать неправильные ожидания к книге, потому сделаю ударение: в книге не будет обучения базовым навыкам работы с Excel. Изложение книги предполагает, что читатель уже на минимальном базовом уровне знаком с Excel.

Очень краткие итоги раздела

Что я хотел, чтобы читатель вынес из раздела:

1. Никогда не ставьте ИЛИ между аналитикой и интуицией. Всегда И. Не умаляйте роль творчества и случайностей.

2. Пять особенностей социально-экономической реальности:

· Изменчивость

· Редкость нормального распределения

· Репрезентативность выборки

· Пристальное внимание к выбивающимся из общего массива случаям / объектам / наблюдениям

· Важность модели

3. Модель должна предшествовать анализу, чтобы иметь возможность объяснить и проинтерпретировать данные.

4. Разницу между данными, метриками, КПД, дашбордами и собственно аналитикой как поиском скрытых закономерностей и построения прогнозов посредством специального набора инструментов.

5. Неважно какой программный продукт / инструмент Вы используете – используйте то, что знаете. Программы / инструменты дополняют и повышают эффективность, но не заменяют человека.

ВВЕДЕНИЕ В СТАТИСТИЧЕСКИЙ АНАЛИЗ

О статистическом анализе

Нас повсюду окружают данные. В соцсетях, в магазинах, рекламе, метро… даже в авиалайнере. Весь мир – это цифры.

Нам может казаться, что собирая данные (при чем все больше и больше), мы контролируем большое количество важных вещей и держим ситуацию под контролем.

Но на самом деле важно уметь отбирать именно те данные, которые помогают понять ситуацию и принять решения, даже располагая неполной информацией. Какие именно данные важны помогает понять модель, о которой мы уже говорили.

С данными помогает работать такая наука как статистика. Именно она позволяет придать понятный вид и смысл огроменным массивам данных, состоящим даже из миллиардов или триллионов значений.

Статистика делится на описательную и аналитическую. Мы в книге рассмотрим оба эти ответвления.

Задача описательной статистикитолько описать объект, процесс, явление – используя среднее значение, % распределения, количество и т. д.

Аналитическая статистикаиспользует более сложные методы, которые позволяют рассчитать взаимосвязи между переменными, а также понять, являются ли эти взаимосвязи просто случайными совпадениями или реальными закономерностями.

Анализ данных является ключевым этапом, в ходе которого происходит непосредственная проверка соответствия собранной информации нашим моделям явлений, процессов или объектов.

И более того: в ходе анализа формулируются и проверяются / уточняются существующие или рождаются новые модели, отражающие те закономерности, которые мы нашли в собранных данных.

Исследователь, ученый, менеджер или работник выдвигает определенную модель явления / процесса / объекта, демонстрирует соответствие (либо противоречие) данных и содержащихся в них закономерностей этой модели – и только потом может опираться на модель, отвлекаясь уже от самих данных. Нам, к примеру, уже не нужно постоянно опираться на данные, чтобы понимать, что Земля вращается вокруг Солнца.

Именно статистический анализ позволяет нам находить скрытые закономерности, которые дают нам больше понимания о реальности и уточняют как она работает.

Но, прежде чем искать закономерности, надо рассмотреть несколько важных вещей из области статистики – и мы их далее рассмотрим в рамках этого раздела.

Выборка и генеральная совокупность

Реальность обычно представлена невероятно большим количеством случаев / наблюдений / объектов. Людей, жителей, клиентов, компаний, растений или животных и т. д. И вся их популяция представляет собой генеральную совокупность.

Например, если объектом нашего интереса (за кем мы желаем понаблюдать и изучить) являются жители конкретного города, то все они и есть наша генеральная совокупность. Но если объектом интереса были бы, к примеру, только люди трудоспособного возраста (или имеющие право голоса на выборах) в этом городе, то наша генеральная совокупность уменьшилась бы.

При решении отдельных задач вполне легко можно исследовать всю генеральную совокупность.

Например, у Вас есть текущая база подписчиков он-лайн журнала – и необходимо предсказать кто из них с высокой долей вероятности не продлит подписку со следующего года.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Никита Сергеев читать все книги автора по порядку

Никита Сергеев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… отзывы


Отзывы читателей о книге Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…, автор: Никита Сергеев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x