Лев Николаев - Металлы в живых организмах
- Название:Металлы в живых организмах
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1986
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лев Николаев - Металлы в живых организмах краткое содержание
Металлы в живых организмах - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Заметим, что кональбумин, содержащийся в яичном белке, играет роль антимикробного фактора и защищает куриные яйца от порчи. Дело в том, что, энергично соединяясь с железом, содержащимся в микроорганизмах, кональбумин прекращает их жизнедеятельность. Так природа экономно использует одно и тоже вещество, применяя его для решения множества разнообразных задач.
Гемэритрин. Химические машины, работающие в организмах, не всегда были такими, какими их сейчас видят биохимики в высокоорганизованных организмах. По мере постепенного развития и усложнения форм жизни изменялись и совершенствовались механизмы обмена веществ. В организмах некоторых беспозвоночных (например, морских червей) функции переноса кислорода выполняет соединение железа — гемэритрин, совершенно не похожее на гемоглобин и не содержащее порфиринового кольца. В этом соединении ионы железа связаны с аминокислотными остатками полипептидной цепи белка, причем для того, чтобы присоединить одну молекулу кислорода, требуется два иона железа (а в гемоглобине — один). Удалось установить, что в гемэритрине пара ионов железа окружена аминокислотными остатками гистидина (четыре остатка) и тирозина (два остатка); предполагают, что и другие аминокислоты (глутаминовая, аспарагиновая кислоты, метионин) участвуют в образовании группировки, окружающей ионы железа.
Свойства железа в таком соединении необычны: при связывании кислорода резко падает магнитная восприимчивость и изменяется окраска гемэритрина — бесцветное соединение становится розово-красным.
Применение наиболее мощных, современных методов исследования (спектроскопия Мессбауера) позволило сделать вывод, что ионы железа в активном центре гемэритрина находятся в различном положении и связаны через кислородный мостик сильным электронным взаимодействием. Возможно следующее расположение ионов железа:
Ионы железа в активном центре гемэритрина находятся в различном положении и связаны через кислородный мостик сильным электронным взаимодействием
Молекула кислорода, по-видимому, присоединяется к мостиковой группе. Возможно, что в результате присоединения кислорода железо(II) переходит в железо(III).
Крупная молекула гемэритрина имеет молекулярную массу около 108000 и состоит из восьми субъединиц (по два атома Fe в каждой). Биологическая роль гемэритрина заключается не только в переносах, но и в резервном хранении связанного кислорода, чем этот белок существенно отличается от гемоглобина. Гемэритрин, по-видимому, выполняет функции и гемоглобина, и миоглобина в организмах беспозвоночных.
В организмах обнаружен ряд белков, способных прочно связывать железо(III). Так, в яичном желтке содержится фосвитин, подавляющий всасывание железа при употреблении яиц в пищу. В желудочном соке найден белок, названный гастроферрином, также прочно соединяющийся с ионами железа. Биологическая роль таких белков не вполне ясна, но высказывается предположение, что они служат в качестве регуляторов поступления железа в клетки. Слишком большой приток ионов железа может оказать вредное действие на клеточные механизмы, поэтому регулирующий аппарат необходим для наиболее эффективной работы биологических машин.
Медь. Медьсодержащие оксидазы
Кроме ионов железа, функцию переноса кислорода и переноса электронов способны выполнять и ионы других металлов, в частности ионы меди.
Соединение, называемое гемоцианином, представляет собой белок, содержащий медь в ионном состоянии. Еще в 1847 г. Харлес, исследуя голубую кровь улитки, пришел к выводу, что голубой цвет обусловлен содержа нием в крови улитки меди вместо железа. Греческое слово "гемоцианин" и означает "синекровный". Гемоцианины различных видов были найдены в моллюсках и членистоногих (в крабах, осьминогах, кальмарах и т. д.), в паукообразных, ракообразных и даже в сороконожках.
Молекулярная масса гемоцианинов колеблется в широких пределах — от 36000 до 825000. Молекула гемоцианина состоит из нескольких равных частей — субъединиц, число которых неодинаково у гемоцианинов различного происхождения. Молекулярная масса наименьших субъединиц равна 36700 (у членистоногих), при содержании меди 0,173%, и 25100 (у моллюсков), при содержании меди 0,253%.
В составе гемоцианина медь находится в степени окисления +1. Предполагается, что два иона меди связывают одну молекулу кислорода: Cu +— О 2— Cu +, причем возможны состояния Cu 2+— O 2 -— Cu +и Cu +— O 2 -Cu 2+Медь, несомненно, связана с какими-то лигандами, но их точный состав не известен. Возможно, что лигандами являются аминогруппы или дисульфидные мостики белка.
Число активных центров гемоцианина, т. е. пар ионов меди, связывающих одну молекулу кислорода, колеблется от 6 до 200, смотря по тому, из каких организмов получен гемоцианин.
Гемоцианин — отнюдь не единственное природное соединение меди. В крови и различных органах животных (почки, печень), а также в тканях растений (огурцы, кабачки, лаковое дерево) и грибов найдена медь, находящаяся там в виде комплексных ионов. Насколько можно судить, комплексообразование происходит между ионами меди и различными участками полипептидной белковой цепи; установлено, что медь часто выполняет те или иные биохимические функции совместно с соединениями железа.
Широкая распространенность в природе белков, связанных с ионами меди, и важность сочетании железо — медь в биохимических реакциях, сопровождающих переносы электронов и окисление пищевых веществ, стимулировали исследования роли меди в процессах жизнедеятельности. Но, несмотря на всю мощь современных физико-химических средств анализа, до сих пор не удалось охарактеризовать медь с такой полнотой, какая достигнута по отношению к соединениям железа.
Установлено, что медьсодержащие белки (например, стеллацианин, получаемый из лакового дерева) служат переносчиками электронов. Ионы меди в белках катализируют реакции гидроксилирования и окисления. Последние особенно важны.
Ферменты, ускоряющие реакции окисления, — оксидазы — довольно многочисленны и содержат ионы меди в различных состояниях. Мы рассмотрим некоторые типичные примеры.
Оксидазы, в молекуле которых содержится не менее четырех атомов меди на молекулу фермента, ускоряют восстановление кислорода до воды. Их синяя окраска настолько интенсивна, что эту группу оксидаз иногда называют "синие оксидазы", в отличие от другой группы оксидаз, в молекуле которых всего один-два атома меди ("несиние оксидазы"). Они окрашены менее ярко и катализируют восстановление кислорода до пероксида водорода.
Читать дальшеИнтервал:
Закладка: