Александр Штейнгауз - Девять цветов радуги

Тут можно читать онлайн Александр Штейнгауз - Девять цветов радуги - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Детгиз, год 1963. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Штейнгауз - Девять цветов радуги краткое содержание

Девять цветов радуги - описание и краткое содержание, автор Александр Штейнгауз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Задумывались ли вы когда-нибудь о том, сколько цветов в радуге? Семь, а может быть, девять, как говорит название книги? Оказывается, их значительно больше, но в то же время название книги правильное. Почему же это так?
Из этой книги вы узнаете, что такое свет видимый и невидимый, как он помогает людям познавать и исследовать окружающий мир, проникать в глубь вещества и в космос. Кроме того, вы прочтете о том, как человек научился видеть в темноте, передавать на огромные расстояния изображения и запечатлевать процессы, длящиеся миллионные доли секунды. Обо всем этом и о других новых достижениях науки и техники рассказано в книге «Девять цветов радуги».

Девять цветов радуги - читать онлайн бесплатно полную версию (весь текст целиком)

Девять цветов радуги - читать книгу онлайн бесплатно, автор Александр Штейнгауз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Зернистую, прерывистую структуру имеет и масса. Так, мельчайшей из мельчайших, наименьшей из возможных масс водорода (водорода как вполне определенного химического элемента) является масса одного его атома, равная примерно 0,000 000 000 000 000 000 000 001 7 грамма.

Итак, квант массы водорода равен 1,7·10 -24грамма. Естественно, что квант массы кислорода будет отличаться от водородного кванта. Но величины их сопоставимы, потому что и та и другая выражаются в граммах массы.

Подобным образом обстоит дело и с квантами излучаемой энергии. Их численное значение оказывается различным для разных длин волн. По определению Планка, величина одного элементарного кванта излучаемой энергии выражается формулой ε = hν , где h — некоторая неизменная величина, названная в честь первооткрывателя постоянной Планка, a v — частота колебаний, на которых излучается энергия.

Если излучение нагретого черного тела разложить в спектр, то в нем будут присутствовать колебания с самыми различными частотами. Поэтому кванты энергии, излучаемой черным телом, также будут иметь самые разнообразные значения.

Объяснение законов излучения черного тела явилось той необходимой проверкой, которая подтвердила правильность новых теоретических положений, выдвинутых Планком. Они в равной мере справедливы для всех видов излучений — не только световых, но и для всего спектра электромагнитных волн, начиная от самых длинных радиоволн, кончая рентгеновскими и гамма-излучениями.

Однако в радиотехнике квантовыми представлениями практически не пользуются. Величина отдельного кванта на радиочастотах столь ничтожна, что излучаемую энергию радиоволн можно, с точки зрения практики, считать величиной непрерывной. Для примера стоит назвать численную величину кванта для радиоволн длиной 3000 метров (частота 100 тысяч колебаний в секунду); она равна 4,4·10 -10электроновольт [8] Энергию в 1 электроновольт приобретает электрон, пролетев между обкладками конденсатора, к которому приложено напряжение, равное 1 вольту. . Именно поэтому классическая электродинамика, созданная Максвеллом, остается полностью справедливой на радиочастотах.

Зернистая структура излучаемой энергии становится заметной на световых волнах. Так, на волне 1,2345 микрона (ближняя инфракрасная область спектра) энергия кванта точно равна 1 электроновольту. На красной границе видимого спектра она возрастает примерно до двух, а на фиолетовой границе — до 4 электроновольт. Но все же эти значения еще чрезвычайно малы в сравнении с 1 квантом энергии, излучаемой в области очень коротковолновых гамма-лучей. Так, на волне в 0,007 миллимикрона энергия кванта становится равной 1770 тысяч электроновольт. Такую энергию приобретает электрон, разгоняясь в электростатическом поле конденсатора, к которому приложено напряжение 1770 тысяч вольт.

Не следует забывать при этом, что эта энергия излучается черным телом либо такой огромной порцией, либо вовсе не излучается. То же происходит и при поглощении — либо всё, либо ничего.

Отказываясь от привычных, казавшихся незыблемыми представлений и формулируя новые идеи, Планк, возможно, не предполагал, что им суждено сыграть революционную роль в развитии основных физических представлений. По крайней мере, вначале он ставил перед собой совершенно конкретную задачу — теоретически обосновать законы излучения черного тела.

Но уже после первого успеха все прогрессивные физики оценили силу идей Планка. Они поняли, что квантовые представления нечто значительно большее, чем это могло казаться вначале. Они использовали новые идеи при исследовании чрезвычайно широкого круга явлений взаимодействия лучистой энергии и вещества. И во всех случаях эти идеи помогали им продвигаться дальше, постигать новые тайны природы.

Квантовая теория получила необычайное развитие. Она помогла установить общность многих важнейших явлений, казавшихся до того совершенно не связанными между собой. Она помогла науке открыть новые необычайные горизонты и, в частности, продвинуться еще на один шаг в направлении разгадки природы света. Этот шаг суждено было сделать гениальному физику Альберту Эйнштейну (1879–1955). В этом ему помогли не только идеи Планка, но и очень важный закон, установленный русским ученым Александром Григорьевичем Столетовым (1839–1896).

Фотоэффект

Проводя свои опыты, Герц попутно заметил, что искра, проскакивавшая между электродами вибратора, странно себя ведет. Казалось, на нее влиял свет. Когда Герц освещал электроды вибратора сильным светом, появление искры учащалось. Стоило убрать источник света — и частота снова резко уменьшалась. Явление было необычное и необъяснимое. Однако Герц, видимо, не придал ему большого значения. Этому, пожалуй, не стоит удивляться — ведь он ставил перед собой совершенно иную задачу.

Не так отнесся к наблюдению, сделанному Герцем, профессор Московского университета А. Г. Столетов, старший товарищ Π. Н. Лебедева. Столетов поставил множество опытов, создал для их проведения специальную аппаратуру и столь глубоко и основательно исследовал новое явление, что результаты его работы привели к замечательному открытию.

Без него ученые не получили бы новых чрезвычайно ценных сведений о природе света, а современное общество не знало бы ни телевидения, ни фототелеграфии, ни звукового кино, ни многих-многих других полезнейших технических новшеств, без которых сейчас невозможно представить себе нашу жизнь.

Явление, изученное Столетовым в 1888–1889 году, называется фотоэффектом. В результате исследований Столетов установил новый физический закон, носящий его имя. К сожалению, в те годы наука еще ничего не знала о существовании электронов (они были открыты лишь в 1897 году), и поэтому Столетов не мог дать правильного физического толкования новому закону. Это было сделано позже, в 1905 году, Эйнштейном.

Чтобы лучше разобраться в явлении фотоэффекта, стоит хотя бы мысленно (а тем, кому удастся, в школе или кружке) провести сравнительно несложный опыт.

Для его проведения необходима электрическая батарея, гальванометр или микроамперметр для измерения силы тока и специальный электровакуумный прибор, называемый фотоэлементом. Его мы и подвергнем исследованию.

Простейший фотоэлемент представляет собой стеклянный баллон, внутри которого находятся два электрода. Чтобы улучшить работу, электродам фотоэлемента часто придают особую форму. Один из них в виде тончайшей металлической пленки (состоящей из соединения цезия с сурьмой или кислорода, серебра и цезия или других элементов) наносится на внутреннюю поверхность баллона, которому специально придана шарообразная форма. Второй электрод представляет собой колечко из тонкой проволоки, находящейся в районе центра сферы. Первый электрод является катодом, вернее, фотокатодом, а второй — анодом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Штейнгауз читать все книги автора по порядку

Александр Штейнгауз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Девять цветов радуги отзывы


Отзывы читателей о книге Девять цветов радуги, автор: Александр Штейнгауз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x