Коллектив авторов - Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ
- Название:Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:978-5-248-00680-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ краткое содержание
Для научных работников, студентов, аспирантов.
Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 1986 г. безвременно скончался Я.Г. Дорфман – исключительно талантливый биолог, занимавшийся биологией развития, и, в частности, сильно интересовавшийся ее логическим описанием, что неудивительно, так как он закончил МФТИ.
Вскоре настали иные времена, и жизнь преподнесла множество парадоксов, для большинства читателей гораздо более интересных, чем парадоксы математической логики. Мысли о публикации статьи, наряду с публикациями многих других работ, мне пришлось оставить, да и печатать статью стало негде (первоначально она предназначалась для «Ученых записок Тартуского университета» – журнала где я печатал тогда большинство своих статей).
В марте этого года М.В. Ильин предложил мне на пару выступить на Роккановском семинаре в ИНИОНе, посвященном возможностям применения семиотики в социальных науках. В своей части выступления я упомянул о предлагаемой читателю статье, коротко изложив ряд ее тезисов, после чего Михаил Васильевич любезно предложил мне ее наконец опубликовать.
Перечитав статью, я убедился что она, на мой взгляд (как это ни странно после 30 лет забвения), выглядит достаточно свежо, и не потеряла новизны. Я надеюсь, что и читатель найдет в ней кое-что интересное.
…Темнота, отмечаемая у него обычно, является следствием нескольких ревниво соблюдаемых им правил, приблизительно так же, как в области наук мы видим, что логика, аналогия и забота о последовательности приводят к представлениям, весьма отличным от тех, которые непосредственное впечатление делает для нас привычным – вплоть до выражений, легко переходящих за пределы нашей способности к воображению.
Поль Валери «Письмо о Малларме»Одной из основных тенденций современной логики является построение формальных систем, состоящих из аксиом и правил вывода, позволяющих механически получать следствия. Обычно в качестве основы формальной системы выбирается одно или несколько логических отношений, экстрагированных из естественно-языковых рассуждений 13 13 Одним из ярких примеров такого подхода к логике является различение Г. Фреге и Б. Расселом трех смыслов (бытие, тождество и предикация) естественно-языковой связки «есть» [Хинтикка, 1980]. Б. Рассел даже счел, что это «первый серьезный успех в реальной логике со времен греков» [Russell, 1914, p. 50].
.
В течение долгого времени формальная логика рассматривала преимущественно системы связанные с отношением включения элемента множества в класс и отношением предикации, которому легко дать теоретико-множественную интерпретацию, что позволяет получить теоретико-множественное обоснование формальной логики и рассматривать ее фактически как часть математики 14 14 Д. Гильберт и В. Аккерман начинают свою известную книгу [Гильберт, Аккерман, 1947] следующей фразой: «Теоретическая логика, называемая также математической или символической логикой, есть применение формального метода математики к области логики».
.
Наивная уверенность в том, что формализация одного или двух отношений выделенных из естественного языка позволит создать универсальные средства получения нового научного знания (а ведь именно в этом качестве мыслилось функционирование математической логики в рамках программы, намеченной Д. Гильбертом, а также Б. Расселом и А. Уайтхедом в [Whitehead, Russell, 1910; 1912; 1913] стала исчезать после доказательства К. Геделем теоремы о неполноте арифметики и привело в настоящее время к существенно иному пониманию места формальных систем в исследовании принципов человеческого мышления 15 15 См. получившую очень большой резонанс и в определенном смысле подводящую итоги исследованиям в области формальных систем и искусственного интеллекта книгу А. Хофштаттера [Hofstadter, 1979].
. Параллельно происходил процесс осознания роли семантики и прагматики в исследовании формальных систем [Семантика… 1981], что привело к построению огромного числа модальных логик [см., например: Фейс, 1974; Неклассическая… 1970]. Отметим, однако, что интуитивно приемлемая теоретико-множественная интерпретация модальных логик существенно отличается от теоретико-множественной интерпретации логики классов [Сергеев, 1984], а построение такой интерпретации в ряде случаев является весьма нетривиальной задачей.
Выбор такого отношения, как предикация, в качестве основы построения логики отнюдь не исчерпывает всех возможностей и, по-видимому, приводит к сильному обеднению ее содержания. А в рамках неевропейских культурных традиций известны логические системы, основанные на выделении других логических отношений в качестве базисных.
Особенно богатой в этом смысле является индийская логическая традиция 16 16 Так, например, логическая система «навья-ньяя» основана на исследовании отношения «проникновения» [Инголс, 1975].
.
По-видимому, целесообразно рассматривать любую формальную логическую систему как «знаковую систему». Эту систему можно представить себе как результат применения своего рода «гомоморфизма», упрощающего систему отношений, существующую в естественном языке, т.е. искусственный язык с более простой грамматикой и семантикой, снимающей некоторые неопределенности и неоднозначности, существующие в естественном языке. Ряд выразительных возможностей естественного языка при этом утрачивается.
Естественно-языковую аргументацию можно рассматривать как средство трансформации знаний 17 17 О фундаментальной роли понятий «знание» и «представление знания» в когнитивных науках см.: [Bobrow, Collis, 1975].
, выраженных естественно-языковыми средствами [Сергеев, 1984]. Соответственно правила вывода в формальной системе трансформируют знания, выраженные средствами формальной системы, аксиомы же представляют из себя «базисное знание». Однако нетрудно заметить, что при таком подходе к формальной логике в центре внимания оказываются вопросы семантики и концептуального анализа (в смысле Р. Шенка), которую традиционная математическая логика вообще пыталась изгнать из рассмотрения.
Отсутствует в традиционной математической логике и понятие модальности, т.е. способа существования объекта. Между тем логика существования является весьма сложным и запутанным предметом, уже в древности порождавшим самые разнообразные взгляды 18 18 Ср. например, «неподвижное бытие» Парменида, «диалектику пустоты» Нагарджуны, «Эйдосы» Платона.
. Способ существования математических объектов – по сей день весьма темный вопрос; ведь именно с ним связаны столь острые дискуссии об основаниях математики – например, борьба между «интуиционистами» и «формалистами» [Representation… 1975]. Разрубание «гордиева узла» путем признания только двух способов существования оппозиций «истина» – «ложь» существенно примитивизирует эту проблему.
Интервал:
Закладка: