Коллектив авторов - Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ

Тут можно читать онлайн Коллектив авторов - Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - бесплатно ознакомительный отрывок. Жанр: Детская образовательная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ краткое содержание

Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Анализируется мировой и отечественный опыт преодоления ограничений, которые накладывают различные методологические подходы. Обсуждаются проблемы проведения междисциплинарных исследований. Рассматриваются возможности различных исследовательских методов. Внимание сосредоточивается на попытках соединения качественных и количественных методик исследования, в частности на отдельных разновидностях так называемого качественного сравнительного анализа (QCA).
Для научных работников, студентов, аспирантов.

Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - читать онлайн бесплатно ознакомительный отрывок

Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Представляет интерес на нескольких примерах проанализировать с семиотической точки зрения функционирование формально-логических систем. Рассмотрим фрагмент текста работы Гильберта и Аккермана, в котором вводятся аксиомы узкого исчисления предикатов [Гильберт, Аккерман, 1947, с. 97].

«К этим аксиомам мы присоединим теперь в качестве второй группы две аксиомы для “все” и “существует”»:

e) (x) F (x)→F (y);

f) F (y) → (Ex) F (x).

Первая из этих аксиом означает «Если предикат F выполняется для всех x, то он выполняется также для любого y».

Вторая формула читается так: «Если предмет F выполняется для какого-нибудь y, то существует x, для которого выполняется F».

Этот текст особенно интересен по следующим причинам:

1. В нем вводятся аксиомы.

2. Поясняется их естественно-языковое содержание, т.е. вводится способ понимания знаковой системы.

По замыслу основателей математической логики «…чего удалось достичь благодаря языку формул в математике, то же должно быть получено с его помощью и в теоретической логике, а именно: точная научная трактовка ее предмета. Логические связи, которые существуют между суждениями, понятиями и т.д. находят свое выражение в формулах, толкование которых свободно от неясностей, какие легко могли бы возникнуть при словесном выражении» [Гильберт, Аккерман, 1947, с. 17].

Именно поэтому особенно интересно сопоставить знаковое и словесное выражение для аксиом формальной системы.

Рассматривая приведенный выше фрагмент логического текста нетрудно заметить следующие его особенности:

знак F (y) в формулах e) и f) трактуется по-разному и имеет два смысла. В е) – F выполняется для любого y. В f) F выполняется для какого-нибудь y.

По-видимому, различение этих смыслов связано с местом F (y) в формулах – в одном случае – на месте консеквента, в другом – на месте антицедента. Различие в смысле, однако, очень велико и никак специально не оговорено.

Совершенно неясно, что имеется в виду в этих текстах под x и y. То ли это объекты, принадлежащие области индивидуумов, то ли это имена объектов, то ли имена ролей [Дорфман, Сергеев, 1983]. Неясно, различны ли объекты, обозначенные разными именами, а также какие из них потенциальны, а какие актуальны. По-видимому, х обозначает потенциальный объект, а y – актуальный.

Уже такой поверхностный анализ показывает, что чтение указанных формул предполагает определенный способ понимания формул, о котором в тексте ничего не говорится, хотя этот текст вводит аксиомы, т.е., обязан содержать интуитивно исчерпывающее описание способа понимания формул. Аналогичные примеры в [Гильберт, Аккерман, 1947] можно с легкостью умножить.

К сожалению, подобное пренебрежение семиотическими различениями и даже сознательная эксплуатация возникающих двусмысленностей заметно не только в «Основах теоретической логики» [Гильберт, Аккерман, 1947], являющейся одной из первых работ по математической логике.

В качестве другого примера рассмотрим язык SELF, предложенный Шмульяном для формализации феномена «самоописания», присутствующий в известном логическом «парадоксе лжеца» [Манин, 1979, с. 78].

«Алфавит SELF: E, * * (симметричные кавычки).

r (отношение ранга I); ¬)(отрицание).

Синтаксис SELF. К отмеченным выражениям принадлежат: ярлыки, экспонаты, формулы и имена.

Ярлык любого выражения Р – это *Р* (Р в кавычках).

Экспонат любого выражения Р – это Р *Р* («вещь с ярлыком»).

Формулы – это выражения вида r E… E *P* и ¬ r E … E *Р*.

Здесь Е стоит на К > 0 местах после r. Сокращенная запись:

r Е к*Р* или ¬ r Е к*Р*. Наконец, введем бинарное отношение на множестве всех выражений «быть именем». Оно определяется рекурсивно:

1. Ярлык Р является именем Р.

2. Если Р – имя Q, то ЕР – имя экспоната Q, т.е. имя выражения Q *Q*».

После этих определений утверждается, что «Е*Е* является одним из двух своих имен. Точно так же формула r Е* r Е говорит о самой себе» [Манин, 1979, с. 79]. Язык SELF представляется в семиотическом плане намного более продвинутым, чем формальный язык узкого исчисления предикатов. Он эксплицирует ряд семиотических различий, позволяющих описывать весьма тонкие логические конструкции.

Семиотический анализ приведенного текста, однако, немедленно выявляет тот факт, что символ Е в этом языке употреблен в двух совершенно различных смыслах:

1. Как семиотический оператор действующий на имя, т.е. выражение *Q*, и превращающий его в Е *Q* – имя экспоната Q в соответствии с (b)).

2. Как индивидуум, являющийся «отмеченным выражением» (его можно заключать в скобках).

Ясно, что в первом смысле Е как семиотический оператор является элементом метатекста, а во втором смысле – элементом текста.

Только эта двойственность смыслов символа Е и дает возможность получить «самоописывающееся» выражение r Е* r Е*, которое потом используется для доказательства упрощенного аналога теоремы Тарского о невыразимости истинности 20 20 При таком доказательстве теорема Тарского остановится теоремой о связи двух семантических неразличений в формальной системе: неразличение текста и метатекста и неразличение оценки «истина – ложь». . Заметим, что применение сформулированного выше семиотического принципа построения формальных систем исключает возможность написания в рамках идей, положенных в основу языка SELF, «самоописывающихся» выражений, которые получаются только путем введения знаковой двусмысленности.

Семантические парадоксы

Хорошо известно [см., например: Фрейденталь, 1969], что «парадокс лжеца» парадоксом содержательной логики не является, т.е. может быть снят анализом прагматической стороны высказывания, именно, выяснением того, является ли данное высказывание элементом текста или «метатекста».

Появляется он лишь в рамках формальных систем, не эксплицирующих прагматику высказываний. Уже в работе «Основы теоретической логики» [Гильберт, Аккерман, 1947, с. 92) совершенно справедливо отмечалось, что так называемые «семантические парадоксы», к которым принадлежит «парадокс лжеца», «не затрагивают нашего исчисления (расширенного исчисления предикатов. – Я.Д ., В.С .), так как оно не в состоянии выразить их чисто логический характер».

Остается только задать вопрос, насколько полезно формальное логическое исчисление, которое не в состоянии выразить логический характер утверждений, представляющихся важными с точки зрения содержательной логики и, как представляется, не содержащих никаких логических понятий выходящих за рамки этого исчисления.

Мы, таким образом, ясно видим семиотический недостаток, общий для многих систем формальной логики – отказ от полной экспликации смысловых различений вплоть до семиотических. Собственно говоря, это было бы совсем нестрашно, если бы формальные тексты рассматривались не как язык, а просто как сокращенная запись, сопровождаемая по мере надобности естественно-языковыми комментариями, как это имеет место в большинстве математических работ. Однако, такое употребление формализма, разрушило бы цель, ради которой он был построен, привело бы к отказу от «идеала» – построения формального языка, не зависящего от естественно-языковой интерпретации символики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ отзывы


Отзывы читателей о книге Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x