Льюис Кэрролл - Логическая игра

Тут можно читать онлайн Льюис Кэрролл - Логическая игра - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Наука, Главная редакция физико-математической литературы, год 1991. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Льюис Кэрролл - Логическая игра краткое содержание

Логическая игра - описание и краткое содержание, автор Льюис Кэрролл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Сборник логических задач автора известных сказок «Алиса в Стране Чудес» и «Сквозь зеркало и что там увидела Алиса» Льюиса Кэрролла в яркой и занимательной игровой форме знакомит читателя с оригинальным графическим методом решения силлогизмов и соритов.

В приложение включены некоторые игры, фокусы и головоломки Льюиса Кэрролла и его письма к детям.

Для школьников 8—10-х классов и всех любителей занимательных задач.


Логическая игра - читать онлайн бесплатно полную версию (весь текст целиком)

Логическая игра - читать книгу онлайн бесплатно, автор Льюис Кэрролл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

16. Все свиньи жирные.

Все скелеты тощи.

17. Ни одна обезьяна не солдат.

Все обезьяны ведут себя непристойно.

18. Ни одна из моих кузин не справедлива.

Все судьи справедливы.

19. Некоторые дни дождливы.

Дождливые дни наводят скуку.

20. Все лекарства противны на вкус.

Александрийский лист — лекарство.

21. Некоторые евреи богаты.

Все патагонцы не евреи.

22. Все трезвенники любят сахар.

Ни один соловей не пьёт вина.

23. Никакая горячая сдоба не полезна.

Все сладкие пирожки не полезны.

24. Ни одно толстое созданье не бегает хорошо.

Некоторые гончие бегают хорошо.

25. Все солдаты маршируют.

Некоторые юноши не солдаты.

26. Сахар сладкий.

Соль несладкая.

27. Некоторые яйца сварены вкрутую.

Все яйца бьются.

28. В этом доме нет евреев.

Все неевреи в саду.

29. Все битвы сопровождаются страшным шумом.

То, что происходит без шума, может ускользнуть от внимания.

30. Ни один еврей не сумасшедший.

Все раввины евреи.

31. Не существует рыбы, которая не умела бы плавать.

Некоторые коньки рыбы.

32. Все склонные к горячности люди неразумны.

Некоторые ораторы склонны к горячности.

Глава 3. Фейерверк ответов

Число гвоздик ты хочешь знать,
Растущих на морозе?
Изволь: оно равно числу
Бананов на берёзе.

1 Ответы на элементарные вопросы 1 Любое свойство которым обладает - фото 92

§ 1. Ответы на элементарные вопросы

1. Любое свойство, которым обладает предмет или которое можно приписать предмету, называется признаком. Например, «пироги» (довольно часто) обладают признаком «подгорелые», а «мальчики» (в исключительно редких случаях) — признаком «милые».

2. Связку имеет смысл ставить между именами двух предметов (например, «Эти свиньи — жирные животные») или двух признаков (например, «Розовый — это бледно-красный»). Тире в первом случае означает связку «суть», во втором случае — связку «есть».

3. Когда одно имя является именем предмета, а другое — именем признака (например «Все свиньи суть розовые»), так как предмет не может в действительности быть признаком.

4. Проще всего предположить, что существительное, входящее в субъект, повторяется в предикате (например, «Эти свиньи суть розовые (свиньи)»).

5. Суждение — это предложение, в котором утверждается, что некоторые или все предметы, принадлежащие определённому классу, называемому субъектом, одновременно являются предметами, принадлежащими некоторому другому классу, называемому предикатом (или что ни один предмет, принадлежащий классу «субъект» не принадлежит классу «предикат»). Например, в суждении «Некоторые свежие булочки невкусные», или, если записать его в развёрнутом виде, «Некоторые свежие булочки суть невкусные булочки», субъектом является класс «свежих булочек», а предикатом — класс «невкусных булочек».

6. Суждение, в котором утверждается, что некоторые из предметов, принадлежащих субъекту суждения, являются такими-то и такими-то, называются частным. Например, «Некоторые свежие булочки вкусные», «Некоторые свежие булочки невкусные» — частные суждения.

Суждение, в котором утверждается, что ни один из предметов, принадлежащих субъекту суждения, не есть то-то и то-то, или, наоборот, все предметы являются такими-то и такими-то, называется общим. Например, «Ни одна свежая булочка не вкусна», «Все свежие булочки не вкусны» — суждения общие.

7. Предметы, находящиеся в любой из клеток малой диаграммы, обладают двумя признаками, которые обозначены буквами, стоящими на прямых, отделяющих эту клетку от соседних .

8. «Некоторые» предметы в логике означают «Один или несколько».

9. «Мир» в нашей игре означает класс предметов, изображаемых на диаграмме.

10. Двойным называется суждение, содержащее два утверждения, например суждение «Некоторые свежие булочки вкусные» и «Некоторые свежие булочки невкусные» — двойное.

11. Разбиение называется исчерпывающим, если каждый элемент класса принадлежит какой-то из частей, на которые распадается класс при данном разбиении. Например, разбиение класса «свежих булочек» на вкусные и невкусные является исчерпывающим, поскольку каждая свежая булочка должна быть либо вкусной, либо невкусной.

12. В тех случаях, когда человек не может решить, в какую из двух партий — республиканцев или демократов — он хочет вступить, в Америке говорят, что он «сидит на стенке» (и не знает, на какую сторону ему спрыгнуть).

13. «Некоторые x суть y » и «Ни один x не есть y' ».

14. Суждения, в которых субъект состоит из одного-единственного предмета, называются единичными. Например, «Я счастлив», «Джона нет дома» — единичные суждения. Единичные суждения относятся к числу общих суждений, поскольку суждение «Я счастлив» эквивалентно суждению «Все я, которые существуют, счастливы», а суждение «Джона нет дома» — суждению «Всех Джонов, которых я рассматриваю в данным момент, нет дома».

15. Из суждений, начинающихся со слов «некоторые» или «все».

16. В тех случаях, когда суждения начинаются со слов «некоторые» или «ни один». Например, суждение «Некоторые abc суть def » можно преобразовать в суждение «Некоторые bf суть acde », причём и исходное и конечное суждения эквивалентны суждению «Некоторые abcdef существуют».

17. Некоторые тигры свирепы.

Ни один тигр не кроток.

18. Некоторые сваренные вкрутую яйца вредны для здоровья.

Ни одно сваренное вкрутую яйцо не полезно для здоровья.

19. Некоторые «я» счастливы.

Ни один «я» не несчастлив.

20. Некоторых Джонов нет дома.

Ни один Джон не дома.

21. Предметы, находящиеся в любой из клеток большой диаграммы, обладают тремя признаками, буквенные обозначения которых стоят у трёх вершин данной клетки (единственное исключение составляет признак m' — предполагается, что буквы m' , хотя в действительности их и нет, стоят во всех четырёх углах большой диаграммы рядом с номерами 9, 10, 15 и 16).

22. Если «Мир предметов» разделён на части по трём различным признакам и нам заданы два суждения, содержащих две различные пары эти признаков, и из них мы можем вывести третье суждение относительно той пары признаков, которые не вошли в первые два суждения, то в этом случае данные два суждения называются «посылками», третье суждение — «заключением», а все три суждения вместе — «силлогизмом». Например, посылками могут быть суждения «Ни один m не есть x' » и «Все m' суть y », из которых можно вывести заключение, содержащее x и y .

23. Если некий признак входит в обе посылки, то содержащий его термин называется «средним термином». Например, если посылки имеют вид суждений «Все m суть x » и «Ни один m не есть y' », то средним термином будет класс « m- предметов».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Льюис Кэрролл читать все книги автора по порядку

Льюис Кэрролл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Логическая игра отзывы


Отзывы читателей о книге Логическая игра, автор: Льюис Кэрролл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x