Сэм Лойд - Самые знаменитые головоломки мира
- Название:Самые знаменитые головоломки мира
- Автор:
- Жанр:
- Издательство:ООО «Фирма «Издательство ACT»
- Год:1999
- Город:Москва
- ISBN:5-237-02034-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сэм Лойд - Самые знаменитые головоломки мира краткое содержание
Сборник математических задач и увлекательных головоломок, принадлежащий перу одного из классиков этого жанра Сэма Лойда, несомненно доставит большое удовольствие всем любителям занимательной математики.
Самые знаменитые головоломки мира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
264
Один мелкий торговец из Кантона купил некоторое количество толстых щенков и вдвое меньше пар крыс. Он заплатил 2 бита за каждого щенка и такую же сумму за каждую пару крыс. Затем он продал этих животных на 10 % дороже, чем купил.
Когда торговец продал всех животных, кроме семи, он обнаружил, что выручил ровно такую же сумму, какую потратил на приобретение всех животных. Следовательно, его доход равен цене семи оставшихся животных.
Какие это семь животных?
265
В старой фирме «Браун энд Джонс» капитал Брауна в полтора раза превышал долю Джонса. Было решено принять в долю и Робинсона при условии, что он внесет 2500 долларов, которые следовало разделить между старыми владельцами так, чтобы доли всех трех партнеров при прежнем суммарном капитале оказались равными. Как именно следовало разделить 2500 долларов?
266
Миссис Хогэн вместе со своей подругой Мэри О'Нейл купили 100 футов полотна. Свою покупку они оплачивали вместе. Поскольку миссис Хогэн принадлежала большая часть уплаченной суммы, то кусок Мэри составил лишь 5/ 7длины куска миссис Хогэн. Сколько футов было в куске каждой из подруг?
267
Фермер Джонс продал пару коров за 210 долларов. На одной корове он заработал 10 %, а на другой – 10 % потерял. Всего доход Джонса составил 5 %. Во сколько первоначально обошлась ему каждая корова?
268

Эта небольшая задача, где речь идет о скачках с препятствиями, вероятно, заинтересует как поклонников скачек, так и любителей головоломок. Похоже, что на рисунке дело уже близится к финишу, осталось преодолеть всего лишь 1 3/ 4мили; но лидеры идут тесной плотной группой, так что, видимо, победа достанется тому, кто найдет кратчайший путь к флагу. Как видно на рисунке, финишный флаг развевается в дальнем углу прямоугольного поля, по краю которого проходит дорога. Один участок дороги имеет в длину милю, а другой – 3/ 4мили.
Следовательно, по дороге путь до флага составляет 1 3/ 4мили, все лошади могут преодолеть его за 3 мин. Однако всадники вольны скакать через поле, но зато по рыхлому грунту скорость будет ниже на 25 %.
В каком месте одномильного участка пути лошадь должна перепрыгнуть через изгородь и ринуться прямо к флагу, чтобы закончить скачку в наименьшее время?
269

Эти веселые монахи положили 10 монет (по одной монете в клетку) так, что получилось 10 рядов, в каждом из которых находится четное число монет. Ряды считаются по горизонтали, вертикали и диагонали. Головоломка состоит в том, чтобы переложить монеты, увеличив тем самым в максимальной степени количество рядов с четным числом монет.
270
Мистер и миссис Смит собирались приобрести домик в пригороде.
– Если ты дашь мне 3/ 4твоих денег, – сказал мистер Смит, – то я прибавлю их к своим деньгам и смогу купить дом стоимостью в 5000 долларов. У тебя же останется при этом достаточная сумма, чтобы купить тенистую рощу и ручей, которые находятся позади дома.
– Нет-нет, – ответила «прекрасная половина». – Дай мне 2/ 3твоих денег, я прибавлю их к своим деньгам, и у меня будет сумма, достаточная, чтобы купить дом, а у тебя как раз останется достаточная сумма, чтобм приобрести эту рощу вместе с журчащим ручейком.
Не сможете ли вы определить цену этих угодий?
271

Дик Виттингтон выдрессировал своего кота так, что тот мог пройти от мыши А (в левом верхнем углу) к мыши Z (в правом нижнем углу) по кратчайшему пути вдоль черных линий, схватив при этом всех мышей.
В то время как король Страны Головоломок пытается решить эту задачу, Дик, указывая на часы лондонского Тауэра, спрашивает у принцессы Загадки.
– Если для того, чтобы пробить 6, часам требуется 6 секунд, то сколько им понадобится времени, чтобы пробить 11?
272
По тем или иным причинам мне никогда не везло в торговле лошадьми. Так, я купил в Техасе одну клячу за 26 долларов Мне пришлось какое-то время платить за ее содержание, пока я наконец не продал ее за 60 долларов На первый взгляд может показаться, что я получил прибыль, однако стоимость содержания была таковой, что я потерял на всей операции сумму, равную половине цены, за которую мне досталась кляча, плюс четверть стоимости ее содержания Не могли бы вы сказать, сколько денег я потерял?
273

С помощью 8 деревянных брусков Маленькая Пастушка построила два квадратных загона для двух ее маленьких игрушечных ягнят. Некий поклонник только что подарил ей третьего ягненка, поэтому девушке хочется, переложив бруски, сделать из них три квадратных загона.
Вырежьте из картона 8 узких полосок, причем 4 из них должны быть вдвое короче остальных четырех, как показано в нижней части рисунка. Головоломка состоит в следующем: расположите 8 полосок на плоской поверхности таким образом, чтобы они образовали 3 квадрата одинаковых размеров.
274
Во время бума, связанного с продажей пригородных участков, один спекулянт недвижимостью, сойдя не на той станции и дожидаясь следующего поезда, сумел провернуть выгодное дельце. Купив участок земли за 24$ доллара, он поделил его на меньшие участки равной величины, которые продал по 18 долларов за участок, закончив всю операцию до прихода поезда. На этом деле он заработал сумму, в точности равную той, в какую ему первоначально обошлись 6 меньших участков.
Сколько малых участков содержалось в большом, купленном спекулянтом?
275

Вы видите на рисунке, как выстроились в ряд 8 уличных шалопаев и их подруг. Задача состоит в том, чтобы переставить мальчиков и девочек так, дабы 4 солдата оказались с одной стороны, а 4 сестры милосердия с другой, оставаясь все, как и прежде, в плотном строю. Перестановку следует сделать всего за 4 хода, а каждый ход состоит в передвижении какой-нибудь пары стоящих рядом детей.
Читать дальшеИнтервал:
Закладка: