Инесса Раскина - Логика для всех. От пиратов до мудрецов
- Название:Логика для всех. От пиратов до мудрецов
- Автор:
- Жанр:
- Издательство:ЛитагентМЦНМОbaa27430-0e26-11e3-a7d4-002590591dd6
- Год:2016
- Город:Москва
- ISBN:978-5-4439-3022-0, 978-5-4439-1022-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Инесса Раскина - Логика для всех. От пиратов до мудрецов краткое содержание
Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).
В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.
Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.
Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.
Логика для всех. От пиратов до мудрецов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 24
Этому решению можно придать более наглядный вид (рис. 24). Вместо таинственных трехбуквенных кодов нарисуем три круга. В один поместим всех владельцев телевизоров, в другой – маляров, в третий – ежедневно посещающих бассейн. Людей, удовлетворяющих всем трем условиям, попросим разместиться на пересечении всех трех кругов, помеченном цифрой 1. Такие люди относятся к первой группе ТМБ. Люди из других групп тоже окажутся на территориях с прежними номерами. Восьмой группе предоставим территорию за пределами всех трех кругов. Дальнейшие рассуждения ничем не отличаются от предыдущей версии.
Ответ.Да, следует.
Занятие 3
3.5. Прав, если считать, что марсиан не существует: ведь любое утверждение обо всех элементах пустого множества истинно.
3.6. 1) Нельзя, так как сумма масс 1 + 2 +… + 30 = 31 × 15 – нечетное число. 2) Можно. Пример можно построить, например, так. Сначала сформируем пятнадцать пар гирек веса 31: 1 + 30, 2 + 29 и т. д. Затем возьмем в каждую из трех куч по пять любых пар.
3.7. 1) Предположим, что таблицу заполнить удалось. Если найти сумму чисел во всех строках, то она окажется четным числом, а если во всех столбцах – то нечетным. Но это одно и то же число.
Ответ.Нельзя.
2) Для приведения примера достаточно заполнить первую строку двойками, а остальные – единицами. Заметим, что если заполнить квадрат 3x3 как попало, а остальные числа ставить в соответствии с условием, пример не может не получиться!
Ответ.Можно.
3.8. Нет. Контрпример изображен на рис. 25.

Рис. 25
3.9. Нет. Контрпример: 2 7+ 15 = 128 + 15 = 143 = 11 · 13.
Комментарий.В настоящее время неизвестно ни одной формулы для вычисления простых чисел.
3.10. Приведем несколько из многих возможных примеров:
1) 1111111212 делится на 12, 1111111125 делится на 15, 1111111432 делится на 16.
2) 111… 1151121792 делится на 128 (все пропущенные цифры – единицы), 222… 22399925 делится на 225 (все пропущенные цифры – двойки).
Ответ.Да.
Комментарий.Для проверки примеров достаточно выполнить деление в столбик. А придумать их можно с помощью признаков делимости: для делимости на 12 надо обеспечить делимость на 3 и 4, для делимости на 15 – на 3 и 5, на 225 – на 9 и 25. Но при сумме цифр 12 или 15 число заведомо кратно 3, а при сумме цифр 225 – кратно 9. Поэтому достаточно с помощью последних цифр обеспечить делимость соответственно на 4, 5 и 25, а затем лишь подобрать нужную сумму цифр. Кроме того, признаки делимости на 2 и 4 можно обобщить: число делится на n -ю степень двойки тогда и только тогда, когда на нее делится число, составленное из n последних цифр исходного. В частности, делимость на 16 проверяется по четырем последним цифрам, а на 128 – по семи. Остальные цифры многозначного числа выбираем любые, лишь бы сумма их была соответственно 16 или 128. Предлагаем читателю самостоятельно составить стозначное число с суммой цифр 144, делящееся на 144.
3.11.1) Высказывания Б, Г и Д равносильны. Они означают одно и то же: множества дедов и множество волшебников имеют хотя бы один общий элемент (см. рис. 26).

Рис. 26
2) Если А истинно, то истинны и высказывания Б, Г и Д (для них Дед Мороз является подтверждающим примером). А вот В может быть как истинным, так и ложным.
3.12. Подсказка.Верите ли вы вДеда Мороза?
Решение.Парадокс связан с различным пониманием высказывания «Дед Мороз – волшебник».
Первый вариант: существование Деда Мороза считается заранее известным, а в Б утверждается лишь, что он является волшебником. Тогда если верно В, то верно и Б, а если верно Б, то верно и А. В таком случае, действительно, если верно В, то верно и А, никакого контрпримера и противоречия здесь нет: раз мы договорились верить в существование Деда Мороза, то множество дедов не может быть пустым.
Второй вариант: заранее ничего не известно; в Б утверждается, что существует Дед Мороз, являющийся волшебником. Тогда если Б верно, то и А верно. Но утверждать, что если верно В, то верно и Б, нельзя (контрпримером является ситуация, когда множество дедов пусто), поэтому вывод «если верно В, то верно и А» делать тоже нельзя.
3.13. Обсуждение.Что останется, если убрать театрализацию? Утверждение «Если это утверждение истинно, то Дед Мороз существует». Истинно ли оно? Если да, то Дед Мороз существует. Но именно это в нем и сказано, то есть оно истинно. А раз оно истинно, то Дед Мороз существует.
Ответ.Проблема в том же месте, что и в задачах 1.4и 1.10первого занятия: классическая логика избегает утверждений, связанных с истинностью их самих: их нельзя считать ни истинными, ни ложными.
Занятие 4
4.7. Пригласят.
Комментарий.Изобразим ситуацию с помощью кругов Эйлера (см. рис. 27). Начертим два пересекающихся круга. В первый круг пригласим тех, кто хорошо поет, во второй – всех, кто хорошо танцует. В ансамбль пригласят тех, кто оказался хотя бы в одном из кругов (на рисунке эта область выделена серым), в том числе и Наташу, находящуюся в пересечении кругов.

Рис. 27
4.8.Предположим, Сеня говорит правду. Тогда, согласно его словам, три остальных гнома – вруны. И, тем самым, фраза Бени является правдой. Значит, предположение приводит к противоречию, поэтому Сеня – врун, и его утверждение, что Женя – врун, является ложным. Отсюда заключаем, что Женя говорит правду. Тем самым, Беня – врун, а Веня говорит правду.
Замечание.Фраза Сени «Да оба они вруны» (относительно Бени и Вени) является ложной (несмотря на то, что Беня действительно врун), поскольку Веня – не врун.
Ответ.Женя и Веня.
4.9.Чтобы Аня и Боря были довольны, в пицце должен быть ровно один из ингредиентов: либо помидоры, либо грибы. С учетом вкусов Вани это должны быть грибы.
Ответ.С грибами.
4.10. Решение 1.Верна ровно одна из двух первых подсказок. Поэтому третья и четвертая неверны. Приз в желтом ящике.
Решение 2.Рассмотрим 4случая. Если приз в синем ящике, то верны подсказки 1и 4.Если в зеленом – то 1,3 и 4.Если в красном – то 2 и 4.Если в желтом – то только 2. Так как верна ровно одна подсказка, то приз находится в желтом ящике.
Ответ.Желтый.
Читать дальшеИнтервал:
Закладка: