Инесса Раскина - Логика для всех. От пиратов до мудрецов

Тут можно читать онлайн Инесса Раскина - Логика для всех. От пиратов до мудрецов - бесплатно ознакомительный отрывок. Жанр: Детская образовательная литература, издательство ЛитагентМЦНМОbaa27430-0e26-11e3-a7d4-002590591dd6, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Инесса Раскина - Логика для всех. От пиратов до мудрецов краткое содержание

Логика для всех. От пиратов до мудрецов - описание и краткое содержание, автор Инесса Раскина, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).

В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.

Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.

Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Логика для всех. От пиратов до мудрецов - читать онлайн бесплатно ознакомительный отрывок

Логика для всех. От пиратов до мудрецов - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Инесса Раскина
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5.10.С точки зрения формальной логики – да, правду. Ведь папоротник не цветет, поэтому утверждение «Человек сорвет цветок папоротника» заведомо ложно. Сложное же высказывание «Если А, то Б» при ложном А истинно независимо от истинности Б.

5.11.Заметим, что из каждого утверждения следует предыдущее (в порядке перечисления). Поэтому если утверждение «Число а делится на 24» верно, то верны и все остальные. Значит, только оно может оказаться единственным неверным из четырех. В качестве примеров подойдут числа, делящиеся на 12, но не делящиеся на 24: 12, 36, 60 и т. д.

5.12.Утверждение «Если на одной стороне карточки написано четное число, то на другой – гласная буква» является ложным лишь в одном случае: если на одной стороне карточки четное число, а на другой – согласная буква. Поэтому надо перевернуть 2 карточки: с числом 4 (на обороте должна быть гласная буква) и с буквой Б (на обороте должно быть нечетное число).

Ответ:2 карточки.

5.13. Решение 1.В (1)сказано, что если не будет ветра, то будет пасмурная погода без дождя. Но в (3) сказано, что пасмурной погоды без дождя не будет. Значит, будет ветрено. По условию (2) в случае дождя ветра не было бы. Значит, дождя не будет. А по условию (3) и в случае пасмурной погоды не было бы ветра. Значит, будет солнечно.

Ответ.Будет солнечно, ветрено, но без дождя.

Комментарий.Разобравшись, в каком порядке использовать условие, удалось решить задачу коротко. Можно прийти к ответу и менее творчески, методом полного перебора.

Решение2. Выпишем все 8 возможных (в этой задаче) типов погоды: СВД, СВ Д, С ВД, С ВД, СВД, СВ Д, СВ Д, СДД. В этой записи С означает солнце, В – ветер, а Д – дождь; если буква зачеркнута, то такого не будет. Например, СВД означает погоду пасмурную, безветренную и с дождем. Вычеркнем сочетания, противоречащие первому прогнозу: С ВД, С ВД, СВД. Остались СВД, СВ Д, СВД, СВ Д, СВД. Вычеркнем из них противоречащие второму прогнозу: СВД, СВД. Остались СВ Д, СВ Д, СВД. Наконец, вычеркнем СВ Ди СВД, противоречащие третьему прогнозу. Остался прогноз СВ Д: солнечно, ветрено, но без дождя.

5.14. Примеры Шляпы и Сони действительно показывают разницу между «А ⇒ Б» и «Б ⇒ А». Чтобы в этом убедиться, можно каждую фразу построить более формально, например, «Если я что-то ем, то я это вижу» и т. п.

Пример Зайца можно понимать по-разному. Первое его высказывание может означать «Если я что-то учу, то я этого не знаю» (А ⇒ «не Б»), тогда второе следует понимать как «Если я что-то знаю, то я этого не учу». (Б ⇒ «не А»). Но оба эти высказывания истинны при одном и том же условии: А и Б не должны выполняться одновременно. А это значит, что высказывания «А ⇒ „не Б“» и «Б ⇒ „не А“» равносильны. Иное возможное толкование первого высказывания «Если я чего-то не знаю, то я это учу» («не А» ⇒ Б) соответствует пониманию второго как «Если я чего-то не учу, то я это знаю» (не Б ⇒ А). Эти высказывания также равносильны, поскольку оба оказываются истинными во всех случаях, кроме одного: А и Б оба ложны. Итак, с формальной точки зрения высказывания «Я учу то, чего не знаю» и «Я знаю то, чего не учу» действительно означают одно и то же, и пример Зайца неубедителен. А с точки зрения здравого смысла? «Я учу то, чего не знаю» говорит о любознательности, а «Я знаю то, чего не учу» – о глупой самонадеянности. В чем секрет? Во временах глаголов! «Я учу то, чего не знаю» мы понимаем как «Я сейчас учу то, чего не знал раньше», а «Я знаю то, чего не учу» – как «Я сейчас знаю то, чего не учил раньше». Никаких одинаковых простых высказываний А и Б не наблюдается, и говорить о равносильности составных нет причин.

Комментарий. Воригинальном английском тексте высказывание Зайца, связанное со свободным употреблением времен глаголов в русском языке, отсутствует. Нет его и в переводах на русский язык В.Набокова и Н. Демуровой.

Занятие 6

6.6. Нет.

6.7. 1) Пусть у меня есть единственный друг Петя. Он болеет за «Спартак», но не занимается спортом. А у «Спартака» кроме Пети есть еще один болельщик, Вася, который спортом занимается. Тогда оба условия верны, а вывод – нет.

2) Пусть есть два паровоза, зеленый и красный. Зеленый является кочаном капусты, но не играет на рояле. А красный, наоборот, кочаном капусты не является, зато на рояле играет. И никаких других кочанов капусты, кроме зеленого паровоза, на свете нет. Тогда оба условия верны, а вывод – нет.

6.8. 1) См. рис. 28.

Рис 28 2 См рис 29 Рис 29 69 Первое рассуждение верное так как все - фото 54

Рис. 28

2) См. рис. 29.

Рис 29 69 Первое рассуждение верное так как все англичане входят в круг - фото 55

Рис. 29

6.9. Первое рассуждение верное, так как все англичане входят в круг любителей пудинга, а французы находятся вне его. Второе неверно. Чтобы в этом убедиться, представьте себе, например, что никто вообще не достоин славы.

6.10. 1) Вывод сделать нельзя. 2) Некоторые горные кручи не являются заборами. 3) Джон – не гусеница. 4) Вывод сделать нельзя. 5) Музыка, не вызывающая колебаний воздуха, не стоит того, чтобы за нее платили деньги.

6.12. Эта задача не столько логическая, сколько лингвистическая. Если первое высказывание понимать как «Любое сочинение Пушкина обладает свойством: его нельзя прочитать за одну ночь», то рассуждение становится логически безупречным. Но на самом деле здесь речь идет обо всех сочинениях Пушкина как о едином целом. И такое высказывание никак не связано со вторым высказыванием об одном из этих сочинений.

Ответ.Вывод неверен.

Занятие 7

7.7. Утверждение «Если собаки рядом нет, то кот не шипит» противоположно обратному к утверждению «Если кот шипит, то рядом собака». Поэтому они равносильны, и достаточно было бы произнести любое из них.

Ответ.Сказал.

7.8. 1) Неверно, про Петино поведение при несделанных уроках никаких данных нет. Он мог, скажем, поднять руку, чтобы задать вопрос. 2) К сожалению, верно. Это можно доказать от противного: если бы Петя был готов к уроку, он бы поднял руку.

7.9. Решение 1.Предположим противное: числа на концах любого ребра отличаются не более чем на 2. Рассмотрим вершину, в которой расположено число 1. В соседних с ней вершинах могут располагаться лишь 2 и 3. Но у каждой вершины куба есть три соседних. Полученное противоречие доказывает, что предположение неверно, и числа на концах хоть какого-нибудь ребра должны отличаться не менее чем на 3.

Решение 2.Предположим противное: числа на концах любого ребра отличаются не более чем на 2. От одной вершины до любой другой вершины можно добраться по одному, двум или трем ребрам. Поэтому числа в вершинах куба отличаются друг от друга не более чем на 6. Однако среди них есть 1 и 8, отличающиеся на 7. Полученное противоречие доказывает, что предположение неверно, числа на концах хоть какого-нибудь ребра должны отличаться не менее чем на 3.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Инесса Раскина читать все книги автора по порядку

Инесса Раскина - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Логика для всех. От пиратов до мудрецов отзывы


Отзывы читателей о книге Логика для всех. От пиратов до мудрецов, автор: Инесса Раскина. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x