Инесса Раскина - Логика для всех. От пиратов до мудрецов
- Название:Логика для всех. От пиратов до мудрецов
- Автор:
- Жанр:
- Издательство:ЛитагентМЦНМОbaa27430-0e26-11e3-a7d4-002590591dd6
- Год:2016
- Город:Москва
- ISBN:978-5-4439-3022-0, 978-5-4439-1022-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Инесса Раскина - Логика для всех. От пиратов до мудрецов краткое содержание
Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).
В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.
Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.
Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.
Логика для всех. От пиратов до мудрецов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Задача4. Два мудреца написали на семи карточках числа от 5 до 11. После этого они перемешали карточки, первый мудрец взял себе три карточки, второй взял две, а две оставшиеся карточки они не глядя спрятали в мешок. Изучив свои карточки, первый мудрец сказал второму: «Я знаю, что сумма чисел на твоих карточках четна!» Какие числа написаны на карточках первого мудреца?
Задача 5.Один из двух братьев-близнецов по имени Джон совершил преступление. Известно, что по крайней мере один из близнецов всегда лжет. Судья спросил у братьев по очереди: «Вы – Джон?» Первый ответил: «Да». Второй тоже что-то ответил. После этого судья смог определить, кто из них на самом деле Джон. Определите это и вы.
Задача 6.На острове живут два племени: рыцарей и лжецов. Путешественник встретил двух островитян и спросил одного из них: «Вы оба рыцари?» Тот ответил «да» или «нет». Путешественник не смог определить, кто перед ним, и спросил у того же человека: «Вы из одного племени?» Тот ответил «да» или «нет», и теперь путешественник понял, из какого племени каждый из островитян. Кого он встретил?
Задача 7.Путешественник посетил деревню, каждый житель которой либо всегда говорит правду, либо всегда лжет. Все жители деревни встали в круг лицом к центру, и каждый сказал путешественнику про соседа справа, правдив ли тот. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей составляют лжецы. Определите и вы, чему она равна.
Задача 8.Путешественник на острове рыцарей и лжецов пришел в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
– Интересно, а сколько среди вас рыцарей? – спросил он.
– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.
– Хорошо. Пусть каждый ответит на вопрос: кто твои соседи? – спросил путешественник.
На этот вопрос все ответили одинаково.
– Данных недостаточно! – сказал путешественник.
– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.
– Да, сегодня день его рождения! – сказал его сосед. И путешественник смог узнать, сколько за столом рыцарей.
Сколько же их?
Задача 9.Саша и Маша загадали по натуральному числу и сказали их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нем оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?
Задача 10.Есть 9карточек с цифрами 1,2…, 9.Их перетасовали, отдали четыре Ивану, четыре Василисе и одну Бабе-Яге. Иван сообщил вслух, что сумма цифр на его карточках оканчивается на 7.
1) Знает ли теперь Василиса карточку Бабы-Яги?
2) Знает ли теперь Баба-Яга набор карточек Василисы?
3) Может ли случится, что про какую-то карточку, кроме своей, Баба-Яга знает, у кого она находится?
Задача 11.Пять мудрецов играют в мафию. Среди них два мафиози, два мирных жителя и комиссар. Мафиози знают друг друга, комиссар знает все, мирные жители изначально ничего не знают. Мафиози могут говорить что угодно. Остальные говорят только то, в чем сами уверены. Состоялся разговор:
А: «Д – мирный житель».
Б: «Нет, Д – мафиози».
В: «Д не знает, кто я».
Г: «Д знает, кто я».
Д: «Б – мафиози».
Определите роли тех игроков, для кого это возможно.
Задача 1.Двум мудрецам принесли один белый и два черных колпака. Затем им завязали глаза и надели каждому на голову по колпаку, а третий спрятали. После этого мудрецам развязали глаза, и каждый смог увидеть, какой колпак на голове у другого. Затем у первого мудреца спросили, какой колпак на голове у него самого, и он ответил правильно. Какие колпаки надели на головы мудрецам?
Задача 2.Двум мудрецам принесли один белый и два черных колпака. Затем им завязали глаза и надели каждому на голову по черному колпаку, а белый спрятали. Когда им развязали глаза, у первого мудреца спросили, какой колпак на голове у него самого. Что он ответил? Когда после этого тот же вопрос задали второму мудрецу, он ответил правильно. Как он догадался?
Задача 3.Изменится ли решение предыдущей задачи, если вначале принесли: а) один белый и три черных колпака; б) два белых и два черных колпака?
Задача 4.Трем мудрецам принесли два белых и три черных колпака. Затем им завязали глаза и надели каждому на голову по черному колпаку, а белые спрятали. Когда им развязали глаза, у первого мудреца спросили, знает ли он, какой колпак на голове у него самого.
а) Что он ответил?
б) Тот же вопрос задали второму мудрецу. Что ответил второй?
в) Наконец, спросили третьего мудреца, и он правильно назвал цвет своего колпака. Как он рассуждал?
Задача 5*. Парадокс трех мудрецов. Взадаче о трех мудрецах первый смог бы определить цвет своего колпака лишь в одном случае: если бы видел перед собой двух мудрецов в белых колпаках. Но и второй, и третий мудрецы знают, что это не так: они же видят черные колпаки друг на друге. Поэтому ответ «Не знаю», произнесенный первым мудрецом, для каждого из них очевиден и не содержит никакой информации.
С другой стороны, если первому мудрецу не задавать вопроса, то второй окажется в положении первого, а третий – в положении второго, и не сможет ответить на вопрос. Но третий ответил, значит, информация в ответе первого все же была! Какая же?
Задача 6.Как можно изменить количество колпаков в задаче о трех мудрецах, чтобы решение всех пунктов в точности сохранилось?
Задача 7*.Придумайте задачу, аналогичную задаче о трех мудрецах, для большего количества мудрецов. Решите задачу для четырех и для пяти мудрецов.
Задача8*. В купе поезда собрались 7 мудрецов. Окно было открыто. Поезд въехал в тоннель, и лица всех мудрецов оказались испачканы сажей. Каждый видел, что и другие испачканы, но себя не видел и спокойно продолжал беседу. В купе вошел проводник и сказал: «Господа, среди вас есть люди с грязными лицами. В поезде воды нет. Зато на каждой станции поезд стоит достаточно долго, так что рекомендую испачкавшимся пойти и умыться». Несколько станций никто из мудрецов не реагировал на это замечание, но на некоторой станции все одновременно встали и пошли умываться.
1) На какой по счету станции мудрецы поняли, что следует умыться?
2) Парадокс проводника. Если бы проводник промолчал, каждый бы по-прежнему считал себя чистым и умываться не пошел бы. Но ведь каждый видел, что среди них есть испачкавшиеся, так что проводник, казалось бы, ничего нового не сказал. Так что же сказал проводник?
Читать дальшеИнтервал:
Закладка: