Феофан Бублейников - О движении
- Название:О движении
- Автор:
- Жанр:
- Издательство:Детгиз
- Год:1956
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Феофан Бублейников - О движении краткое содержание
О движении - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Сперва шарик был пущен с верхнего конца желоба. Когда он докатился вниз, Галилей заметил по водяным часам, сколько понадобилось ему на это времени.
По закону, выведенному теоретически Галилеем, расстояние, пройденное свободно падающим телом, увеличивается пропорционально квадрату времени. Следовательно, в четыре раза более короткий путь шарик должен пройти во вдвое более короткий промежуток времени. Пустив шарик с верхнего конца четвертой части длины желоба, Галилей убедился, что для этого расстояния шарику действительно понадобилось только вдвое меньше времени.

Опыт Галилея со скатыванием шариков по наклонной плоскости.
Так было доказано, что скатывание по наклонной плоскости подчиняется закону, выведенному для свободного падения. Значит, предположение Галилея, что ускорение свободного падения постоянно, справедливо.
Пользуясь наклонной плоскостью, можно было определить ускорение скатывания по ней. Для этого достаточно только заметить время, в течение которого шарик проходит всю ее длину.
Галилей хотел из этого опыта определить ускорение свободного падения. Он не знал, что вращение шарика очень усложняет эту задачу, которая могла быть решена таким путем только после открытия законов вращения тел.
Вот если бы можно было осуществить опыт скольжения тела без трения по наклонной плоскости, то такая задача не представила бы затруднений.
Допустим, что тело, скользящее по наклонной плоскости, прошло длину ее l за t секунд. Тогда l = at 2 /2 , где a — ускорение скольжения.
Из закона наклонной плоскости следует, что сила, действующая вдоль нее, во столько раз меньше силы тяжести, во сколько высота ее меньше длины. Поэтому ускорение свободного падения легко было бы определить, зная ускорение скользящего тела.
Галилей изучал движение падающего тела кинематически, то-есть только с геометрической стороны. Он не принимал во внимание силы тяжести, сообщающей телам движение. Самое понятие о силе еще было неясным. Галилей часто называл причину, вызывающую движение, «импульсом» — слово, обозначающее в современной механике произведение силы на время (равное количеству движения). Но открытие кинематических законов движения падающих тел все-таки позволило Галилею решать практические задачи техники, например баллистики — науки о движении пушечных ядер.
Проблема траектории брошенного тела
Открытие законов свободного падения было началом динамики. Оно позволило немедленно же разрешить давнишнюю проблему о траектории пушечного ядра, которая имела важный практический характер.
Ядро вылетает из пушки под огромным давлением расширяющихся горячих газов. По выходе из ствола оно двигалось бы по инерции равномерно и прямолинейно, если бы его не притягивала Земля. Но как только оно покинет ствол пушки, притяжение Земли заставляет его падать.
Траектория брошенного тела определяется сложением поступательного движения и свободного падения.
Понятие о независимости движений было известно еще Аристотелю, указавшему правило их сложения: совершая движение в двух различных направлениях, тело движется по диагонали параллелограмма, построенного на скоростях этих движений.
Но почему ни Аристотель, ни его последователи не решили проблему траектории брошенного тела? Этому помешало их пренебрежение опытом: сложение движений они рассматривали только как геометрическую теорему. Но они не наблюдали движений физических тел и не знали, что реальные движения в действительности именно так и слагаются. Только поэтому аристотелианцы и могли утверждать, будто бы ядро сперва летит прямолинейно в направлении выстрела, а затем падает вертикально. Ошибочность этого мнения легко было доказать, бросив камень и наблюдая его движение.
Галилей же применил кинематическое правило сложения движений к действительному движению физических тел. Так, например, описывая воображаемый опыт с шаром, который катится по горизонтальной плоскости, он говорил: «…если же плоскость конечна и расположена высоко, то тело, имеющее вес, достигнув конца плоскости, продолжает двигаться далее таким образом, что к его первоначальному, равномерному, беспрепятственному движению присоединяется другое, вызываемое силой тяжести, благодаря чему возникает сложное движение, слагающееся из равномерного горизонтального и естественно ускоренного движения».
Исходя из свойства инерции движущихся тел, Галилей утверждал, что выброшенное пушкой ядро совершает одновременно два движения: по инерции равномерное, прямолинейное и под действием тяжести равномерно-ускоренное. Он указывал, что скорость падения не зависит от поступательного движения ядра вперед.
Эта мысль была совершенно нова и неожиданна для механиков начала XVII века. На пояснении ее особенно внимательно и остановился Галилей: «Не замечательная ли вещь, — говорит один из собеседников в „Диалоге“, — что в то самое малое время, какое требуется для вертикального падения на землю с высоты каких-нибудь ста локтей, ядро, силою пороха выброшенное из пушки, пройдет четыреста, тысячу, четыре тысячи, десять тысяч локтей, — так что при всех горизонтально направленных выстрелах останется в воздухе одинаковое время».
Можно считать, что в каждый очень короткий промежуток времени ядро движется по диагонали прямоугольника, построенного на. скоростях равномерного движения по горизонтали и ускоренного движения по вертикали.
Разобьем все время, прошедшее от момента вылета ядра из пушки до падения его на землю, на большое число очень коротких равных промежутков.
В течение каждого такого промежутка времени ядро проходит по горизонтали одно и то же расстояние. По вертикали же пройденные расстояния возрастают, как натуральный ряд нечетных чисел.
В каждый промежуток времени ядро движется по диагонали прямоугольников, построенных на скоростях движения по горизонтали и по вертикали.
Если промежутки времени очень малы, то диагонали совпадают с плавной кривой линией, загибающейся вниз, к земле. Не ограничиваясь этим выводом, Галилей доказал, что траектория ядра — парабола.
После этого не осталось сомнений, что нельзя направлять ствол орудия прямо на цель. Для попадания в далекий предмет нужно стрелять наклонно вверх. Для разных расстояний этот угол различен.
Нетрудно построить и траекторию ядра, откладывая по направлению его движения скорость, а по вертикали — пройденные расстояния в свободном падении в первую, вторую, третью и так далее секунды. Она будет всегда параболой с ветвями различной длины. Только при выстреле под углом в 45° к горизонту, если бы не было сопротивления воздуха, ядро описало бы равнобочную параболу. В этом случае оно пролетело бы и наибольшее расстояние.
Читать дальшеИнтервал:
Закладка: