Феофан Бублейников - О движении

Тут можно читать онлайн Феофан Бублейников - О движении - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая детская литература, издательство Детгиз, год 1956. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Феофан Бублейников - О движении краткое содержание

О движении - описание и краткое содержание, автор Феофан Бублейников, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

О движении - читать онлайн бесплатно полную версию (весь текст целиком)

О движении - читать книгу онлайн бесплатно, автор Феофан Бублейников
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Правда, автор «Проблем механики», говоря о действии рычага, упоминал, что «тела, у которых произведения весов на скорость равны, обнаруживают равное действие» и что «сила, приложенная на большем расстоянии от точки опоры, легче двигает груз, так как она описывает больший круг». Но объяснял он эти правильные положения какими-то «загадочными» свойствами круга, пускаясь в рассуждения, очень далекие от современной механики.

Концы рычага при движении описывают дуги круга. Свойствами круга и объясняется действие рычага. Таково мнение автора «Проблем механики». Но окружность, как ему кажется, — очень загадочная кривая линия.

«Нет ничего странного в том, — говорит он, — что из удивительного проистекает нечто удивительное. Но самое удивительное есть соединение в одном противоположных свойств. А круг есть действительно соединение таковых».

Автору кажется удивительным, что окружность одновременно выпукла и вогнута, что точка на окружности, движущаяся вперед, одновременно движется и назад.

Если, однако, оставить без внимания эти рассуждения, то можно признать, что закон рычага уже был известен во времена Аристотеля. Правда, не в той четкой форме, какая была ему дана позднее Архимедом.

Конечно, свойства рычага были хорошо изучены техниками, применявшими его для поднятия тяжестей. Философам принадлежит только попытка «объяснить» эти свойства.

В «Проблемах механики» рассмотрено много случаев приложения закона рычага. Например, когда два человека несут груз на шесте, положив к себе на плечи его концы.

Носильщики переносят груз на шесте Почему спрашивает автор груз - фото 7

Носильщики переносят груз на шесте.

«Почему, — спрашивает автор, — груз сильнее давит на того, к кому он ближе?» Ответ таков: «Шест является здесь рычагом. Ближайший к грузу носильщик есть движимое, другой носильщик — движущее, и чем дальше последний удален от груза, тем легче он движет».

Это сравнение не вполне ясно. Но оно свидетельствует о знании обратной пропорциональности уравновешивающихся грузов плечам рычага.

В действительности давление груза разлагается на две силы, приложенные к плечам носильщиков. Эти силы, в сумме равные грузу, по величине обратно пропорциональны расстояниям его от концов шеста.

В «Проблемах механики» уже был решен один из важнейших вопросов науки о движении тел: как будет двигаться тело, которому сообщено движение одновременно по двум направлениям?

«Если что-нибудь, — говорит автор, — движется в каком-нибудь отношении так, что оно должно пройти по одной линии, то эта прямая будет диагональю фигуры, которая определяется слагаемыми в данном отношении линиями».

Пусть, например, гребец направляет лодку наискось поперек течения, которое, в свою очередь, уносит лодку.

Лодка идущая под парусом поперек реки сносится течением В результате она - фото 8

Лодка, идущая под парусом поперек реки, сносится течением. В результате она движется по диагонали параллелограмма, построенного на скоростях в этих направлениях.

В каждом из этих направлений движение происходит одновременно.

В результате лодка будет двигаться по диагонали параллелограмма, сторонами которого служат пройденные ею расстояния в каждом из направлений. А стороны этого параллелограмма относятся друг к другу, как скорости движения лодки под ударами весел и течения реки.

Пользуясь этим правилом, автор сочинения рассматривает движение по кругу как результат сложения одновременных движений к центру круга и по касательной к нему. Такое представление было большим шагом вперед в науке о движении тел.

Положим, что нужно изучить вращательное движение гирьки на шнурке вокруг руки.

В каждый момент можно считать, что она движется по двум направлениям: во-первых, по касательной к кругу, то-есть по направлению перпендикуляра к шнурку; во-вторых, по направлению к центру круга — к руке, держащей конец шнурка.

Значит, в течение очень короткого времени гирька перемещается по диагонали параллелограмма этих двух движений. Из сложения очень большого числа таких перемещений и слагается криволинейное движение гирьки.

Пращник сообщает камню круговое движение Когда он выпускает из рук один конец - фото 9

Пращник сообщает камню круговое движение. Когда он выпускает из рук один конец веревки, то камень летит по касательной к описываемому им кругу.

Наконец, от внимания древних механиков не ускользнуло, что удар действует гораздо сильнее, чем давление.

Ударяя, например, молотком по вертикальному клину, можно вогнать его в раскалываемое бревно. Но сколько бы ни лежал этот молоток сверху клина, он не произведет никакого заметного действия.

Объяснение разницы между ударом и давлением, конечно, намного превышало механические познания древних ученых. Оно стало возможным только через два тысячелетия — после глубоких исследований голландского математика Гюйгенса.

Закон рычага, параллелограмм скоростей и представление о круговом движении как получающемся из сложения прямолинейных движений — вот то положительное, что дал Аристотель для механики. Дальнейшее ее развитие в античное время зависело от применения к ней математики.

Возникновение математики у греков

Первые попытки приложения математики к механике были сделаны еще Аристотелем и его ближайшими последователями. В «Проблемах механики» впервые встречаются чертежи и буквенные обозначения величин. Но математические познания древних греков были гораздо значительнее, чем примененные философами в механике.

Греческая математика возникла не на «пустом месте». Египтяне и вавилоняне значительно ранее древних греков обладали большими по тому времени математическими познаниями. Находясь в постоянных сношениях с этими народами, греки могли пользоваться уже имевшимися знаниями и развивать их дальше.

Одновременно возникла математика и у индийцев. После похода Александра Македонского в Индию на границе этой страны были основаны небольшие греческие государства. Через их посредство Греция поддерживала торговые отношения и обмен знаниями с народами Индии.

Еще в IV веке до н. э. строителям жертвенников в Индии были известны свойства катетов и гипотенузы прямоугольного треугольника. Индийцы сформулировали их в следующем выражении: «Диагональ прямоугольника производит то, что производят отдельно длинная и короткая стороны прямоугольника», то-есть им была известна теорема Пифагора.

Позднее именно индийцы придумали знаки для обозначения чисел и нуля, которые были заимствованы у них арабами, а от них перешли как «арабские» в Европу. Индийцам принадлежит и честь изобретения «позиционной» системы написания чисел: в ней каждая цифра обозначает десятки, сотни и так далее, в зависимости от места.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Феофан Бублейников читать все книги автора по порядку

Феофан Бублейников - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




О движении отзывы


Отзывы читателей о книге О движении, автор: Феофан Бублейников. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x