Лариса Вольницкая - Музыкальная геометрия мира: музыка и мы. Игра-эксперимент «Узел» в письмах к М.

Тут можно читать онлайн Лариса Вольницкая - Музыкальная геометрия мира: музыка и мы. Игра-эксперимент «Узел» в письмах к М. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая детская литература, издательство Array SelfPub.ru, год 2019. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Лариса Вольницкая - Музыкальная геометрия мира: музыка и мы. Игра-эксперимент «Узел» в письмах к М. краткое содержание

Музыкальная геометрия мира: музыка и мы. Игра-эксперимент «Узел» в письмах к М. - описание и краткое содержание, автор Лариса Вольницкая, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Письма адресованы любознательному подростку (12-13 лет), занимающемуся музыкой, но приоритетным направлением интересов которого являются информатика и естествознание. Письма возникли из желания предложить такой взгляд на древнее искусство музыки, который стал бы открытием. Музыка – не только услаждающее душу искусство, но и серьёзная наука. Раскрытие этой идеи предложено в форме игры-эксперимента: игра-эксперимент с простыми геометрическими моделями на основе узла и игра-эксперимент в сфере умозрения.

Музыкальная геометрия мира: музыка и мы. Игра-эксперимент «Узел» в письмах к М. - читать онлайн бесплатно полную версию (весь текст целиком)

Музыкальная геометрия мира: музыка и мы. Игра-эксперимент «Узел» в письмах к М. - читать книгу онлайн бесплатно, автор Лариса Вольницкая
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Музыкантам-композиторам нужны были неограниченные возможности инструментов и новых средств для выражения этого дыхания, для переполнявших их души чувств и мыслей.

Что их так волновало?

– Захватывающая идея и захватывающий процесс под названием ТЕМПЕРАЦИЯ!

Энциклопедия:

Темперация– от лат. temperatioправильное соотношение.

(Не могу удержаться от комментария посреди энциклопедической статьи. В этом слове – «темперация» – сошлись два смысла: temp (время, или пространство-время) и ratio (разум, рассудок). Разумное упорядочивание пространства-времени звука: ведь сама природа звука связана с природой земного времени.)

В музыке темперация – это выравнивание интервальных

соотношений между ступенями.

Темперацией занимался и Пифагор, создавая свой строй. Выравнивать интервальные соотношения помогало изменение натяжения струны и особое устроение кифары, позволявшее корректировать звуки прямо в процессе исполнения. Но в записи эта темперация предстаёт неравномерной.

Попытки перенести пифагорову струнную темперацию на флейты только подчеркнули неравномерность изначальных расчётов строя Пифагором, без этой струнной коррекции.

«Система 12 люй» приближала к решению проблемы – через полутоновые соотношения. Но проблему коммы эта система не решала.

(Интересно, что китайцы, рассчитывая свой строй, с флейтами поступали аналогично тому, как Пифагор со струной на монохорде, – когда определял основные консонансы.

Они, грубо говоря, брали трубу и нарезáли её на отрезки разной длины, которые становились флейтами. Высота звука зависела от длины отрезка трубы.

Взяли кусок – он стал изначальным тоном (примой). Отрéзали от него 1/3. Получили 2/3. Он зазвучал как квинта.

А дальше к октаве они стали подбираться через квинты (квинтовые шаги, или квинтовые ходы).

Отрезок с первой полученной квинтой они опять брали за основу и уже от него отрезáли 1/3. И так поступали до тех пор, пока не добирались до октавного звука. А это получалось через 12 шагов (операций отрезáния). Длина флейты уменьшáлась – звук становился выше.

Если длину трубы брали на 1/3 больше изначальной, звук становился ниже и звучал как кварта – ¾. Из кварт можно было получать звуки с понижением.

И всё было бы замечательно, если бы получаемый в конце концов октавный звук в точности согласовывался с примой. Но этого не получалось, – как и у Пифагора при изначальном делении струны.

(Ой-ой-ой, прости, пожалуйста, ещё на мгновение отвлечёмся. Вот тебя прямо сейчас не озарила одна изумительная мысль в связи с китайскими флейтами? – Ведь сам принцип фрактальной геометрии – он же

ф л е й т о в ы й !!! Берёшь отрезок, вычитаешь 1/3; из каждого полученного отрезка опять вычитаешь 1/3, и опять повторяешь эту же операцию, и опять… – Это же квинтовые шаги! Все фрактальные фигуры образуются квинтовыми шагами. Эту операцию с отрезками проделывали и Кох, и Серпинский, и Мандельброт… Фракталы = музыка?! Фрактальная геометрия – родом из музыки, а значит, и из астрономии?.. Ну и сюрпризы способен преподносить нам мир и модуляции Мысли!..)

Да… Европейцы столкнулись с проблемой неравномерной темперации строя в связи с оргáнами. Любопытно, что вначале они тоже пошли по «китайскому пути», пытаясь вычислить высоты полутонов. И тоже пришли к десяти одинаковым полутонам и двум отличающимся по высоте, но тоже равным.

Этими вычислениями занимался немецкий математик и теоретик музыки Генрих Граммáтеус (1492-1525гг.). Он повторил китайцев в расчёте полутонов.

Следующий шаг совершил итальянский теоретик музыки и композитор Винченцо Галилеи (1520-1591гг.), отец знаменитого астронома Галилео Галилея.

Из статьи о нём в Википедии: «В настройке лютни он предлагал делить октаву одинаковыми полутонами 18:17 – эта величина, хотя и рассчитанная приблизительно, весьма близка равномерно темперированному полутону.»

Зачем нужны были р а в н ы е отношения между звуками, зачем нужна была одинаковая м е р а отношений между их высотами (один и тот же коэффициент) и почему именно оргáн потребовал этого?

Тысячи труб – это тысячи звуков.

Это – невероятные возможности проявления мощи звучания.

Это – великий соблазн создать грандиозную модель грандиозного мира: Вселенная-Земля-Человек с его душой и духом. Соблазн смоделировать такую сложную Жизнь, в которой, тем не менее, всё как-то согласуется, – причём в к а ж д ы й м о м е н т существования мира.

Вот если бы в мысленном эксперименте «Жизнь» мы в какое-то мгновенье нажали клавишу «стоп» (как на компьютере во время кинофильма), мы бы увидели о д н о в р е м е н н о е сочетание всех движений всех существ и явлений, попавших в «кадр», – словно замерли, зафиксировались отдельные ноты мелодий их жизней (в масштабе Вселенной – жизней планет, звёзд, галактик…). Мы бы увидели что-то, похожее на аккорд.

Мы бы увидели, что в каких-то точках все сложные движения согласуются, не мешают друг другу и даже вторят друг другу, – и тем поддерживают друг друга. Они оказались в моменте к о н с о н а н с а. Они словно упорядочивают множество всех, таких разных, движений, – которые кажутся нам на первый взгляд сплошным хаосом.

В хаосе есть точки, которые и не согласовываются друг с другом – диссонансы. Они рассеяны, не согласованы друг с другом. В них нет силы. Сила проявляется в согласованности.

Сила аккорда– в согласованности его звуков-точек, в г а р м о н и и.

Мир не рассыпается в пыль хаоса благодаря консонансам.

Слова «точка» и «точный» – родственники.

Чем точнее консонансы – тем большей силой они обладают.

Фиксированные звуки флейт, ставших трубами оргáна, и желание самогó пространства-времени, желание самой Жизни явить себя в аккордах – совпали.

Каждый звук должен был иметь шанс поучаствовать в аккорде: ведь все они рождены квинтой-доминантой. Шансы у всех звуков должны были быть р а в н ы. Один и тот же коэффициент отношений между звуками устанавливал это равенство.

Так и явилась в мир музыкальных звуков идея р а в н о м е р н о й

т е м п е р а ц и и всего музыкального строя.

Как ни странно, задачку с этой самой равномерной темперацией (причём, точнее всех) решил человек, на родине которого и не помышляли об оргáне. Соотечественников этого гения вовсе даже и не интересовали его эксперименты и расчёты. Заинтересовали только 200 лет спустя.

Чжу Цзай-юй.

Нам уже встречалось это имя.

Он был современником Винченцо Галилея ( Винченцо Галилей: 1520-1591гг., Чжу Цзай-юй: 1536-1610гг.).

Так в одном информационном поле Земли о д н о в р е м е н н о вспыхнули импульсы-озарения Мысли европейской и китайской. Им оставалось только окончательно слиться в консонансе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лариса Вольницкая читать все книги автора по порядку

Лариса Вольницкая - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Музыкальная геометрия мира: музыка и мы. Игра-эксперимент «Узел» в письмах к М. отзывы


Отзывы читателей о книге Музыкальная геометрия мира: музыка и мы. Игра-эксперимент «Узел» в письмах к М., автор: Лариса Вольницкая. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x