Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия
- Название:Аппаратные интерфейсы ПК. Энциклопедия
- Автор:
- Жанр:
- Издательство:Издательский дом «Питер»
- Год:2002
- Город:Санкт-Петербург
- ISBN:5-94723-180-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия краткое содержание
Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.
Аппаратные интерфейсы ПК. Энциклопедия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
6А, B5, DA, ED, F6, FB, 7D, BE, DF, 6F, 37, 1B, 0D, 86, C3, 61, B0, 58,
2С, 16, 8В, 45, A2, D1, E8, 74, 3A, 9D, СЕ, E7, 73, 39

Рис. 6.5. Сдвиговый регистр LFSR карты PnP
Протокол изоляции основан на уникальном последовательном идентификаторе ( Serial Identifier ), хранящемся в памяти каждой карты PnP. Этот идентификатор представляет собой ненулевое 72-битное число, состоящее из двух 32-битных полей и 8-битного контрольного кода, вычисляемого с помощью того же регистра LFSR. Первое 32-битное поле представляет собой идентификатор производителя. Второе поле назначается производителем и уникально для каждого экземпляра всех выпускаемых им карт. Здесь может присутствовать серийный номер, а для адаптера Ethernet это может быть и частью MAC-адреса. Принцип построения последовательного идентификатора гарантирует, что в одной системе не могут встретиться две карты с совпадающими идентификаторами. Однако случалось, что незадачливые производители тиражировали (свои ли?) устройства, копируя всю «начинку», включая и серийные номера. Доступ к идентификатору осуществляется последовательно, начиная с бита 0 нулевого байта идентификатора производителя и заканчивая битом 7 контрольной суммы. Во время передачи идентификатора на вход C1
схемы LFSR поступают текущие биты идентификатора, а на вход C2
подаются стробы чтения регистра Serial Isolation
(см. ниже). В тактах передачи контрольной суммы ее биты берутся с выхода сдвигового регистра.
Протокол изоляции может быть программно инициирован в любой момент времени посылкой корректного ключа инициализации, переводящего все карты в конфигурационный режим. В этом режиме каждая карта ожидает 72 пары операций чтения порта READ_DATA
. Ответ каждой карты на эти операции определяется значением очередного бита ее последовательного идентификатора.
Если текущий бит идентификатора карты имеет единичное значение, то ее буфер шины данных в первом чтении пары выводит на шину данных значение 55h. Если текущий бит нулевой, то буфер работает на чтение шины данных и логика карты анализирует ответ других карт — проверяет наличие комбинации «01» в битах D[1:0] (младшие биты числа 55h). В следующем цикле чтения пары карта с единичным битом выводит число AAh, а карта с нулевым текущим битом проверяет наличие комбинации «10».
Если карта, просматривающая вывод данных другими картами, обнаружила корректные коды в обоих циклах чтения пары, она в данной итерации изоляции исключается.
Если карта в текущей паре управляла шиной или карта читала шину, но не обнаружила корректных активных ответов других карт, она сдвигает идентификатор на один бит и готовится к приему следующей пары циклов чтения.
Эта последовательность выполняется для всех 72 бит идентификатора. В конце процесса останется лишь одна карта. Записью в управляющий регистр PnP (индекс 06) ей назначается селективный номер CSN
, по которому она будет использоваться в дальнейших операциях. Карта с назначенным номером CSN
в следующих итерациях протокола изоляции не участвует (на пары чтений не отвечает).
Во время протокола изоляции карты не имеют права удлинять шинные циклы с помощью сигнала IOCHRDY
, поскольку это привело бы к неопределенности результатов наблюдения за «соседями». В других режимах этот сигнал может быть использован без особых ограничений.
Программа конфигурирования проверяет данные, возвращаемые во время всех пар циклов чтения, и побитно собирает прочитанный идентификатор. Если в паре приняты байты 55h и AAh, то соответствующий бит считается единичным, в других случаях он считается нулевым. При приеме идентификатора программа подсчитывает контрольную сумму и сравнивает ее с принятой. Несовпадение контрольной суммы или отсутствие среди принятых байт 55h и AAh указывает на то, что выбранный адрес порта READ_DATA
конфликтует с каким-либо устройством. Тогда программа пробует произвести итерацию, переместив адрес порта READ_DATA
в допустимом диапазоне адресов. Если при переборе нескольких возможных адресов не удается считать корректный идентификатор, то принимается решение об отсутствии карт PnP в системе (вообще или с неназначенными номерами CSN).
Программа должна обеспечивать задержку 1 мс после подачи ключа перед первой парой чтений и 250 мкс между парами чтений. Это дает карте время для доступа к информации, которая может храниться и в медленных устройствах энергонезависимой памяти.
Итак, по завершении протокола изоляции программное обеспечение имеет список идентификаторов обнаруженных карт и присвоенных им селективных номеров, сообщенных и самим картам. Далее общение программы с каждой картой идет по ее селективному номеру CSN, фигурирующему в командах PnP. Нулевой CSN присваивается картам по программному или аппаратному сбросу и используется как широковещательный адрес.
Конфигурирование карт выполняется обращениями к регистрам PnP. Обращения к регистрам PnP представляют собой операции записи или чтения портов ввода-вывода по адресам WRITE_DATA
или READ_DATA
соответственно. При этом для указания конкретного регистра PnP используется индекс — номер этого регистра, предварительно записанный в регистр ADDRESS
.
Каждая карта имеет стандартный набор регистров PnP, причем часть из них относится к карте в целом, а часть — к каждому логическому устройству, входящему в карту. Архитектура PnP поддерживает концепцию многофункциональности, согласно которой каждая карта может включать в себя несколько логических устройств. В любой момент времени в индексном пространстве регистров PnP отображаются стандартные регистры управления картой (см. ниже) и регистры только одного логического устройства (рис. 6.6). Выбор логического устройства, с которым производится общение, осуществляется записью в регистр Logical Device Number
, входящий в группу управляющих регистров карты.

Рис. 6.6. Конфигурационные регистры PnP (* — определяется разработчиком)
Все логические устройства карт PnP должны обеспечивать, по крайней мере, минимальную функциональность:
♦ регистры ресурсов при чтении должны отражать фактические текущие на стройки;
♦ бит активации при чтении должен отражать реальное состояние активности устройства на шине ISA;
♦ если программа пытается «навязать» карте конфигурацию, не поддерживаемую устройством, это устройство не должно активироваться и, соответственно, при чтении его флаг активации должен быть сброшен.
Читать дальшеИнтервал:
Закладка: