Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия
- Название:Аппаратные интерфейсы ПК. Энциклопедия
- Автор:
- Жанр:
- Издательство:Издательский дом «Питер»
- Год:2002
- Город:Санкт-Петербург
- ISBN:5-94723-180-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия краткое содержание
Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.
Аппаратные интерфейсы ПК. Энциклопедия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 6.14. Коннектор карты AGP Pro (показан ключ питания карты 1,5 В): а — вид сверху, б — профиль ключей
Таблица 6.16. Дополнительные контакты коннектора AGP Pro
Ряд D | Контакт | Ряд C |
---|---|---|
VCC3.3 | 1 | VCC3.3 |
VCC3.3 | 2 | GND |
VCC3.3 | 3 | VCC3.3 |
VCC3.3 | 4 | GND |
VCC3.3 | 5 | GND |
VCC3.3 | 6 | GND |
VCC3.3 | 7 | GND |
VCC3.3 | 8 | GND |
PRSNT2# | 9 | Резерв |
PRSNT1# | 10 | Резерв |
Ряд E | Контакт | Ряд F |
Резерв | 1 | Резерв |
Резерв | 2 | Резерв |
GND | 3 | VCC12 |
GND | 4 | VCC12 |
GND | 5 | VCC12 |
GND | 6 | VCC12 |
GND | 7 | VCC12 |
GND | 8 | VCC12 |
GND | 9 | VCC12 |
GND | 10 | VCC12 |
GND | 11 | VCC12 |
GND | 12 | VCC12 |
GND | 13 | VCC12 |
GND | 14 | VCC12 |
В совокупности карта AGP Pro может потреблять до 110 Вт мощности, забирая ее по шинам питания 3,3 В (до 7,6 А) и 12 В (до 9,2 А) с основного разъема AGP, дополнительного разъема питания AGP Pro и одного-двух разъемов PCI. Карты AGP Pro большой мощности (High Power, 50-110 Вт) занимают 2 слота PCI, малой (Low Power, — 50 Вт) — 1 слот. Соответственно скобка крепления к задней панели ПК у них имеет утроенную или удвоенную ширину. Кроме того, карты имеют крепеж к передней стенке ПК. На дополнительном разъеме цепь PRSNT1#
служит признаком наличия карты (контакт заземлен), a PRSNT2#
— признаком потребляемой мощности (до 50 Вт — контакт свободен, до 110 Вт — заземлен).
В спецификации AGP8X предполагаются следующие основные отличия:
♦ введен новый режим передачи по шинам AD и SBA — 8х, обеспечивающий пиковую производительность 2,132 Гбайт/с;
♦ исключены команды длинного чтения и записи;
♦ исключены команды высокого приоритета (и упразднены сами понятия низ кого и высокого приоритета);
♦ исключена возможность подачи команд с помощью сигнала РIРЕ#
;
♦ предпринимаются меры по обеспечению когерентности при обращениях к памяти, не лежащей в области GART;
♦ несколько изменены протоколы передачи данных, применяется динамическое инвертирование шины данных для минимизации переключений.
Дополнительно предполагается введение поддержки изохронных передач; возможность установки нескольких портов AGP; возможность поддержки разных размеров страниц, описанных в GART; обеспечение когерентности при обращениях к определенным страницам.
6.4. Интерфейс LPC
Интерфейс LPC (Low Pin Count — малое число выводов) предназначен для локального подключения устройств, ранее использовавших шину X-Bus или ISA: контроллеров НГМД, последовательных и параллельных портов, клавиатуры, аудиокодека, BIOS и т.п. Введение нового интерфейса обусловлено изживанием шины ISA с ее большим числом сигналов и неудобной асинхронностью. Интерфейс обеспечивает те же циклы обращения, что и ISA: чтение-запись памяти и ввода-вывода, DMA и прямое управление шиной (bus mastering). Устройства могут вырабатывать запросы прерываний. В отличие от ISA/X-Bus с их 24-битной шиной адреса, обеспечивающей адресацию лишь в пределах первых 16 Мбайт памяти, интерфейс LPC имеет 32-битную адресацию памяти, что обеспечивает доступ к 4 Гбайт памяти. 16-битная адресация портов обеспечивает доступ ко всему пространству 64 К портов. Интерфейс синхронизирован с шиной PCI, но устройства могут вводить произвольное число тактов ожидания. Интерфейс программно прозрачен — как и для ISA/X-Bus, не требует каких-либо драйверов. Контроллер интерфейса LPC является устройством-мостом PCI. По пропускной способности интерфейс практически эквивалентен этим шинам. В спецификации LPC 1.0 приводится расчет пропускной способности интерфейса и устройств, его использующих. При наличии буферов FIFO интерфейс наиболее выгодно использовать в режиме DMA. В этом случае главным потребителем будет LPT-порт — при скорости передачи данных 2 Мбайт/с он займет 47% полосы интерфейса. Следующим будет инфракрасный порт — 4 Мбит/с (11,4%). Остальным устройствам (контроллер НГМД, СОМ-порт, аудиокодек) требуются еще меньшие доли, в результате они занимают до 75% полосы при одновременной работе. Таким образом, перевод этих устройств с ISA/X-Bus на LPC не должен вызывать проблем производительности более острых, чем были на старых шинах.
Интерфейс имеет всего 7 обязательных сигналов:
♦ LAD[3:0]
— двунаправленная мультиплексированная шина данных;
♦ LFRAME#
— индикатор начала и конца цикла, управляемый хостом;
♦ LRESET#
— сигнал сброса, тот же, что и RST#
на шине PCI;
♦ LCLK
— синхронизация (33 Мгц), тот же сигнал, что и CLK
на шине PCI;
Дополнительные сигналы интерфейса LPC:
♦ LDRQ#
— кодированный запрос DMA/Bus Master от периферии;
♦ SERIRQ
— линия запросов прерывания (в последовательном коде), используется, если нет стандартных линий запросов IRQ в стиле ISA;
♦ CLKRUN#
— сигнал, используемый для указания на остановку шины (в мобильных системах), требуется только для устройств, нуждающихся в DMA/BusMaster в системах, способных останавливать шину PCI;
♦ РМЕ#
— событие системы управления потреблением (Power Management Event), может вводиться периферией, как и в PCI;
♦ LPCPD#
— Power Down, указание от хоста устройствам на подготовку к выключению питания;
♦ LSMI#
— запрос прерывания SMI#
для повтора инструкции ввода-вывода.
Сигналы LFRAME#
и LAD[3:0]
синхронизированы (являются действительными) по фронту LCLK
. По шине LAD[3:0]
в каждом такте цикла передаются поля элементов протокола. Обобщенная временная диаграмма цикла обмена по LPC приведена на рис. 6.15. Начало каждого цикла хост отмечает сигналом LFRAME#
, помещая на шину LAD[3:0]
поле START
. По сигналу LFRAME#
все ПУ должны прекратить управление шиной LAD[3:0]
, а по коду поля START
они должны декодировать последующие события как цикл шины. В следующем такте хост снимет сигнал LFRAME#
и поместит на шину LAD[3:0]
код типа цикла CYCTYPE
. Сигнал LFRAME#
может длиться и более одного такта, но признаком начала цикла (поля START
) является последний такт перед снятием сигнала. С помощью сигнала LFRAME#
хост может принудительно прервать цикл (например, по ошибке тайм-аута), выставив соответствующий код.

Рис. 6.15. Протокол LPC
В поле START
возможны следующие коды:
♦ 0000 — начало цикла обращения хоста к устройству;
♦ 0010 — предоставление доступа ведущему устройству 0;
Читать дальшеИнтервал:
Закладка: