Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия
- Название:Аппаратные интерфейсы ПК. Энциклопедия
- Автор:
- Жанр:
- Издательство:Издательский дом «Питер»
- Год:2002
- Город:Санкт-Петербург
- ISBN:5-94723-180-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия краткое содержание
Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.
Аппаратные интерфейсы ПК. Энциклопедия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Флэш-память по определению относится к классу EEPROM (электрическое стирание), но использует особую технологию построения запоминающих ячеек. Стирание во флэш-памяти производится сразу для целой области ячеек (блоками или полностью всей микросхемы). Это позволило существенно повысить производительность в режиме записи (программирования). Флэш-память обладает сочетанием высокой плотности упаковки (ее ячейки на 30 % меньше ячеек DRAM), энергонезависимого хранения, электрического стирания и записи, низкого потребления, высокой надежности и невысокой стоимости. Первые микросхемы флэш-памяти были предложены фирмой Intel в 1988 году и с тех пор претерпели существенные изменения по архитектуре, интерфейсу и напряжению питания.
Каждая ячейка флэш-памяти состоит всего из одного униполярного (полевого) транзистора. Ячейки организованы в матрицу; разрядность данных внешнего интерфейса — 8 или 16 бит (ряд микросхем имеет переключаемую разрядность). Чистые (стертые) ячейки содержат единицу во всех битах; при записи (программировании) нужные биты обнуляются. Возможно последующее программирование и уже записанных ячеек, но при этом можно только обнулять единичные биты, но не наоборот. В единичное состояние ячейки переводятся только при стирании. Стирание выполняется для всей матрицы ячеек; стирание одиночной ячейки невозможно. Чтение флэш-памяти ничем не отличается от чтения любой другой памяти — подается адрес ячейки, и через некоторое время доступа (десятки-сотни не) на выходе появляются данные. Запись выглядит несколько сложнее — для программирования каждого байта (слова) приходится выполнять процедуру, состоящую из операций записи и считывания, адресованных к микросхеме флэш-памяти. Однако при этом шинные циклы обращения к микросхеме являются нормальными для процессора, а не растянутыми, как для EPROM и EEPROM. Таким образом, в устройстве с флэш-памятью легко реализуется возможность перепрограммирования без извлечения микросхем из устройства. Большинство микросхем флэш-памяти имеют интерфейс, аналогичный асинхронной статической памяти (SRAM), а при чтении он упрощается до интерфейса ROM/PROM/EPROM. Существуют версии с интерфейсом динамической памяти, асинхронным и синхронным, а также и со специальными интерфейсами, в том числе и I²С. Первые микросхемы работали только при напряжении питания 5 В, а для программирования и стирания требовали дополнительное питание V PP= +12 В. Затем появились микросхемы всего с одним напряжением питания +5 В. Дальнейшее развитие технологии позволило снизить напряжение питания до 2,7–3,3 В и 1,65-2,2 В, a V PP— до 5, 3,3, 2,7 и даже 1,65 В. В производстве микросхем используется технологические процессы с разрешением 0,3, 0,22, 0,18 мкм (чем мельче ячейки, тем они экономичнее). Микросхемы первых выпусков (1990 г.) имели гарантированное число циклов стирания-программирования 10 000, современные — 100 000.
Флэш-память имеет время доступа при чтении 35-200 нс. Стирание информации (поблочное или во всей микросхеме) у микросхем середины 90-х годов занимает 1–2 секунды, программирование (запись) байта — порядка 10 мкс. У современных микросхем время стирания и записи заметно сократилось. Процедура записи от поколения к поколению упрощается (см. ниже). От ошибочного стирания (записи) применяются различные методы программной и аппаратной защиты. Программной защитой является ключевая последовательность команд, нарушение которой не позволяет начать операции стирания и записи. Аппаратная защита не позволяет выполнять стирание и запись, если на определенные входы не поданы требуемые уровни напряжения. Аппаратная защита может защищать как весь массив целиком, так и отдельные блоки.
По организации массива в плане стирания групп ячеек различают следующие архитектуры:
♦ Bulk Erase (BE) — все ячейки памяти образуют единый массив; запись возможна в произвольную ячейку; стирание возможно только для всего объема сразу;
♦ Boot Block (BB) — массив разделен на несколько блоков разного размера, стираемых независимо, причем один из блоков имеет дополнительные средства защиты от стирания и записи;
♦ Flash File — массив разделен на несколько равноправных независимо стираемых блоков обычно одинакового размера, что позволяет их называть микросхемами с симметричной архитектурой (Symmetrical Architecture, SA).
Организация BE применялась только в микросхемах первого поколения, ее недостатки вполне очевидны (получается просто аналог EEPROM с более удобным способом стирания и интерфейсом программирования). Все современные микросхемы секторированы (разбиты на отдельно стираемые блоки), так что остается лишь деление на симметричную и несимметричную архитектуру.
В симметричной архитектуре (SA), как правило, используется разбиение на блоки по 64 Кбайт; один из крайних блоков (с самым большим или самым маленьким адресом) может иметь дополнительные средства защиты.
В асимметричной архитектуре один из 64-килобайтных блоков разбивается на 8 блоков по 8 Кбайт. Один из блоков имеет дополнительные аппаратные средства защиты от модификации и предназначается для хранения жизненно важных данных, не изменяемых при запланированных модификациях остальных областей. Эти микросхемы специально предназначены для хранения системного программного обеспечения (BIOS), а привилегированный блок ( Boot Block ) хранит минимальный загрузчик, позволяющий загрузить (например, с дискеты) и выполнить утилиту программирования основного блока флэш-памяти. В обозначении этих микросхем присутствует суффикс T (Тор) или В (Bottom), определяющий положение Boot-блока либо в старших, либо в младших адресах соответственно. Первые предназначены для процессоров, стартующих со старших адресов (в том числе, х86, Pentium), вторые — для стартующих с нулевого адреса, хотя возможны и противоположные варианты, когда некоторые биты шины адреса перед подачей на микросхему памяти инвертируются. Старые микросхемы BB малого объема имели немного другое распределение, например микросхема 28F001ВХ-Т ( 28F001BN-Т ), часто применяемая для флэш-BIOS в PC, содержит:
♦ основной блок (Main Block) объемом 112 Кбайт (00000h-1BFFFh);
♦ два блока параметров (Parameter Block) объемом по 4 Кбайт (1C000h-1CFFFh и 1D000h-1DFFFh);
♦ загрузочный блок (Boot Block) объемом 8 Кбайт (1E000h-1FFFFh), стирание и программирование которого возможны лишь при особых условиях.
Основной блок и блоки параметров по защите равноправны; выделение небольших блоков параметров позволяет в них хранить часто сменяемую информацию, например ESCD технологии PnP.
Выпускают и комбинированные микросхемы, например MT28C3214P2FL представляет собой комбинацию флэш-памяти 2 М×16 и SRAM 256 К×16.
По организации матрицы ячеек различают архитектуры NOR и NAND. В традиционной организации NOR транзисторы на одном проводе объединяются своими стоками параллельно, как бы образуя логический элемент ИЛИ-НЕ (NOR — Not OR). Эта организация обеспечивает высокое быстродействие произвольного считывания, что позволяет исполнять программы прямо из флэш-памяти (не копируя в ОЗУ) без потери производительности. В организации NAND несколько транзисторов разных ячеек соединяются последовательно, образуя логический элемент И-НЕ (NAND — Not AND), что дает высокую скорость последовательных обращений.
Читать дальшеИнтервал:
Закладка: