Крис Касперский - ТЕХНИКА СЕТЕВЫХ АТАК
- Название:ТЕХНИКА СЕТЕВЫХ АТАК
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Крис Касперский - ТЕХНИКА СЕТЕВЫХ АТАК краткое содержание
ТЕХНИКА СЕТЕВЫХ АТАК - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Первые версии UNIX в качестве односторонней функции использовали модифицированный вариант известного криптостойкого алгоритма DES. Под криптостойкостью в данном случае понимается гарантированная невозможность вычисления подходящего пароля никаким иными способом, кроме тупого перебора. Впрочем, существовали платы, реализующие такой перебор на аппаратном уровне и вскрывающие систему за разумное время, поэтому пришлось пойти рискованный шаг, внося некоторые изменения в алгоритм, «ослепляющие» существующее «железо». Риск заключался в возможной потере криптостойкости и необратимости функции. К счастью, этого не произошло.
Другая проблема заключалась в совпадении паролей пользователей. В самом деле, если два человека выберут себе одинаковые пароли, то и хеши этих паролей окажутся одинаковыми (а как же иначе?). А вот это никуда не годится, - в многопользовательской системе шансы подобного совпадения не так малы, как это может показаться на первый взгляд, и в результате возможен несанкционированный доступ к чужим ресурсам.
Разработчики нашли элегантное решение, - результат операции хеширования зависит не только от введенного пароля, но и случайной последовательности бит, называемой привязкой ( salt ). Разумеется, саму привязку после хеширования необходимо сохранять, иначе процесс не удастся обратить. Однако никакого секрета привязка не представляет, (поскольку шифрует не хеш-сумму, а вводимый пользователем пароль).
Хеш-суммы, привязки и некоторая другая информация в UNIX обычно хранится в файле “/etc/passwd”, состоящего из строк следующего вида:
· kpnc:z3c24adf310s:16:13:Kris Kaspersky:/home/kpnc:/bin/bash
Разберем, что этот дремучий лес обозначает. Первым идет имя пользователя (например, “kpnc”), за ним, отделенное двое точением, следует то, что начинающими по незнанию называется «зашифрованным паролем». На самом деле это никакой не пароль - первые два символа представляют собой сохраненную привязку, а остаток - необратимое преобразование от пароля, то есть хеш. Затем (отделенные двоеточием) идут номер пользователя и номер группы, дополнительная информация о пользователе (как правило, полное имя), а замыкают строй домашний каталог пользователя и оболочка, запускаемая по умолчанию.

Шифрование паролей происходит следующим образом, - случайным образом выбираются два символа привязки [100], использующиеся для модификации алгоритма DES. Затем шифруется строка пробелов с использованием пароля в качестве ключа. Полученное 64 битое значение преобразуется в одинадцатисимвольную строку. Спереди к ней дописываются два символа привязки, и на этом весь процесс заканчивается.
Продемонстрировать работу функции crypt поможет следующий пример (на диске он расположен в файле “/SRC/ctypt.c”). Его компиляция потребует библиотеки ast.lib, распространяемой вместе с “UWIN” (смотри главу «Как запускать UNIX приложения на Windows»), если же такой библиотеки у читателя нет, можно воспользоваться готовым к работе файлом “/SRC/crypt.exe”. Для запуска программы в командной строке необходимо указать шифруемый пароль и отделенную пробелом привязку.
· #include «windows.h»
· extern char *crypt(const char*, const char*);
·
· int main(int argc, char *argv[])
· {
· printf("%s\n", crypt (argv[1],argv[2]));
· return 0;
·}
Прототип функции crypt выглядит следующим образом: char * crypt(char *passwd, char *solt), где passwd - пароль для шифрования, а solt - два символа привязки. При успешном выполнении функция возвращает 13-символьный хеш готовый к употреблению - два символа привязки и 11-символьная хеш-сумма пароля.
Теперь можно реализовать некое подобие подсистемы аутентификации UNIX. Сперва необходимо добавить нового пользователя в файл passwd. Одни из вариантов реализации приведен ниже (на диске он находится в файле “/SRC/crypt.auth.add.new.user.c”). Для упрощения, поддерживается только один пользователь.
· #include «stdlib.h»
· #include «stdio.h»
· #include «time.h»
·
· extern char *crypt(const char*, const char*);
·
· int main(int argc, char *argv[])
· {
· int a;
· char salt[3];
· FILE *f;
·
· salt[2]=0;
· srand((unsigned)time(NULL));
· for(a=0;a«2;a++) salt[a]=0x22+(rand() % 0x40);
· if (!(f=fopen("passwd","w"))) return -1;
· fputs(crypt(argv[1], amp;salt[0]),f);
· fclose(f);
· return 0;
·}
Запустим откомпилированный пример и укажем любой произвольный пароль в командной строке, например, так: “crypt.auth.add.new.user.exe 12345”. Теперь заглянем в файл “passwd”. Его содержание должно быть следующим “^37DjO25th9ps” [101]. Очевидно, для проверки правильности вводимого пользователем пароля необходимо выделить первые два символа привязки, вызвать функцию crypt, передав ей в качестве первого параметра проверяемый пароль, а вторым - привязку, в данном случае “^3”, и после завершения работы сравнить полученный результат с “^37DjO25th9ps”. Если обе строки окажутся идентичны - пароль указан верно и, соответственно, наоборот. Все это реализовано в следующем примере, приведенном ниже (на диске он находится в файле “/SRC/crypt.auth.c”):
· #include «stdio.h»
· extern char *crypt(const char*, const char*);
·
· int main(int argc, char *argv[])
· {
· int a=1;
· char salt[2];
· char passwd[12];
· char *x;
· FILE *f;
·
· passwd[11]=0;
· while(a++) if (argv[1][a]«0x10) {argv[1][a]=0;break;}
·
· if (!(f=fopen("passwd","r"))) return -1;
· fgets( amp;salt[0],3,f);
· fgets( amp;passwd[0],12,f);
· fclose(f);
·
· if (strcmp( amp;passwd[0],crypt(argv[1], amp;salt[0])+2))
· printf("Wrong password!\n");
· else
· printf("Password ok\n");
·
· return 0;
·}
Запустим “crypt.auth.exe”, указав в командной строке пароль “12345”. Программа подтвердит правильность пароля. А теперь попробуем ввести другой пароль, - и результат не заставит себя долго ждать.
· crypt.auth.exe 12345
· Password ok
· crypt.auth.exe MyGoodPasswd
· Wrong password!
Время выполнения функции crypt на PDP-11 доходило до одной секунды. Поэтому, разработчики посчитали вполне достаточным ограничить длину пароля восьми символами. Попробуем посчитать какое время необходимо для перебора всех возможных комбинаций. Оно равно ( n k -0+ n k -1+ n k -2+ n k -3+ n k -4… n k )) , где n - число допустимых символов пароля, а k - длина пароля. Для 96 читабельных символов латинского алфавита перебор пароля в худшем случае потребует около 7x10 15секунд или более двух сотен миллионов лет! Даже если пароль окажется состоящим из одних цифр (коих всего-навсего десять) в худшем случае его удастся найти за семь лет, а в среднем за срок вдвое меньший.
Другими словами, сломать UNIX в лоб не получится. Если пароли и в самом деле выбирались случайно, дело действительно обстояло именно так. Но в реальной жизни пользователи ведут себя не как на бумаге, и выбирают простые короткие пароли, часто совпадающие с их именем, никак не шифрующимся и хранящимся открытым текстом.
Первой нашумевшей атакой, использующей человеческую беспечность, был незабываемый вирус Морриса. Он распространялся от машины, к машине используя нехитрую методику, которую демонстрирует фрагмент исходного кода вируса, приведенный ниже (на прилагаемом к книге диске он по некоторым причинам отсутствует, однако это никому не помешает найти его в сети самостоятельно):
Читать дальшеИнтервал:
Закладка: