Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
- Название:OrCAD PSpice. Анализ электрических цепей
- Автор:
- Жанр:
- Издательство:ДМК Пресс, Питер
- Год:2008
- Город:Москва, Санкт-Петербург
- ISBN:978-5-9706-0009-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей краткое содержание
Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.
На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.
OrCAD PSpice. Анализ электрических цепей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
На схеме (рис. 9.17) показан источник постоянного напряжения в 12 В с внутренним сопротивлением R i =5 Ом, подключенный к переменному нагрузочному резистору R L . Чтобы реализовать переменный резистор R L , необходимо использовать команду .MODEL для резистора. Она выглядит следующим образом:
.MODEL RL RES

Рис. 9.17. Схема для исследования максимальной мощности при изменении сопротивления нагрузки
где RL — выбранное имя модели и RES — тип вызываемой модели. Использование модели позволяет нам включить RL в качестве варьируемого параметра в команду .DC sweep, показав диапазон значений для сопротивления. Команда при этом выглядит следующим образом:
.DC RES RL(R) 0.1 10 0.1
Здесь RES — имя варьируемой переменной, запись RL(R) использует выбранное нами имя модели, a ( R ) имя прибора, которым в данном случае является резистор. Весь входной файл:
Maximum Power with Variable Load Resistor
V 1 0 12V
RI 1 2 5
RLOAD 2 0 RL 1
.MODEL RL RES
.DC RES RL (R) 0.1 10 0.1
.PROBE
.END
Обратите внимание на команду RLOAD. Последний заданный в ней параметр — масштабный множитель 1. Это необходимое значение, без которого анализ не будет работать. Целью введения этого параметра в команду является стремление учесть различные множители, например, когда имеется несколько резисторов, использующих одну модель.
Выполните анализ и получите график
I(RI)·V(2),
представляющий собой мощность, выделяемую в резисторе нагрузки. Убедитесь, что максимум приходится на значение R =5 Ом, подставив RLOAD =5 Ом. Используйте курсор, чтобы показать, что Р max=7,2 Вт. Этот график показан на рис. 9.18.

Рис. 9.18. Зависимость мощности от сопротивления
Встроенная модель биполярного транзистора
В начальных главах мы не использовали при анализе транзисторных схем встроенную модель для плоскостного биполярного транзистора (BJT). Хотя одно из основных преимуществ PSpice заключается в широком диапазоне и многосторонности встроенных моделей, в то же время эти сложные модели могут напугать начинающего пользователя. Например, встроенная модель Q для биполярного транзистора содержит 40 параметров, которые могут быть определены пользователем. Если вы посмотрите раздел «Q — биполярный транзистор» в приложении D, то увидите, насколько всесторонними являются эти параметры.
Многие из них вам, вероятно, совершенно не знакомы и выходят за рамки нашего обсуждения.
Выходные характеристики схемы с общим эмиттером
Чтобы представить модель биполярного транзистора, мы используем схему смещения усилителя с ОЭ, представленную на рис. 9.19. Такую схему вы могли бы использовать, если бы вам пришлось исследовать выходные характеристики биполярного транзистора в лаборатории. Вы получили бы подобную характеристику, поддерживая постоянным входной ток I В при изменении напряжения V CE . Большинство студентов знакомо с этим экспериментом. Рассмотрим теперь этот эксперимент с точки зрения PSpice. Мы вызываем транзистор Q1 и используем имя модели BJT. При использовании этих обозначений необходимая команда примет вид:
Q1 3 2 0 BJT

Рис. 9.19. Схема для снятия выходных характеристик усилителя ОЭ на биполярном транзисторе
Узлы приводятся в последовательности коллектор, база, эмиттер . Команда ввода модели:
.MODEL BJT NPN
где запись BJT выбрана в соответствии с нашим обозначением Q1, a NPN — тип модели для npn -транзистора. Получится следующий входной файл:
BJT PSpice Model Characteristics
VBB 1 0 1V
RS 1 2 10k
RL 3 4 0.01
Q1 3 2 0 BJT; 3=collector, 2=base, 1=emitter
VCE 4 0 5V
.MODEL BJT NPN
.DC VCE 0 15V 0.1V
.PROBE
.END
Проведите анализ и получите график -I(RL). Знак минус правилен относительно команды ввода R L , показанной в файле. Используйте режим курсора, чтобы найти IC max. Вы должны получить IC max=2,07 мА. Характеристика показана на рис. 9.20. Удалите эту кривую и получите график I(RS), чтобы посмотреть входной ток I B . Проверьте, что его максимальное значение I В =20,7 мкА. Из двух полученных значений можно вычислить h FE =100, что соответствует параметру B F , приведенному в модели. При необходимости вы можете задавать другие значения для BF в некоторых моделях транзистора (см. список всех параметров транзистора в разделе «Q — биполярный транзистор» приложения D).

Рис. 9.20. Выходная характеристика для схемы на рис. 9.19
Входные характеристики схемы с общим эмиттером
Входные характеристики могут быть получены из входного файла, который ссылается на встроенную модель следующим образом:
BJT Input Characteristics
IBB 0 1 100uA
Rs 1 0 1000k
RL 2 3 1k
Q1 2 1 0 BJT
VCC 3 0 12V
.MODEL BJT NPN
.DC IBB 0 100uA 1uA
.PROBE
.END
Из рис. 9.21 видно, что для этой модели npn -транзистора значение V BE в активной области составляет около 0,8 В. Поскольку оно приблизительно на 0,1 В выше, чем то же значение в применявшейся нами ранее собственной модели для BJT, стандартная модель даст результаты, которые несколько отличаются от полученных ранее.

Рис. 9.21. Входная характеристика для схемы на рис. 9.19
Другие активные полупроводниковые приборы
Приложения А, В и D содержат распечатки моделей для других активных устройств, включая «В— GaAsFET» и «М — MOSFET». С точки зрения обучения вам полезнее использовать собственные модели для транзисторов и других устройств. Это позволит вам решать, какая из моделей более всего соответствует ситуации. Применение встроенных моделей в более сложных случаях позволит вам устанавливать параметры, которые в простых моделях не могут учитываться.
Дифференциальные усилители
Дифференциальный усилитель используется в качестве первого каскада ОУ. В простейшем случае он напоминает схему на рис. 9.22. Для анализа мы используем встроенную модель для npn-транзистора, применив согласованную пару для Q 1 и Q2, выбрав R s1=R s2 =1 кОм и R c1=R c2= 2 кОм.
Читать дальшеИнтервал:
Закладка: