Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
- Название:OrCAD PSpice. Анализ электрических цепей
- Автор:
- Жанр:
- Издательство:ДМК Пресс, Питер
- Год:2008
- Город:Москва, Санкт-Петербург
- ISBN:978-5-9706-0009-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей краткое содержание
Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.
На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.
OrCAD PSpice. Анализ электрических цепей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
MODEL <���имя модели> <���тип модели>

Рис. 9.1. Однополупериодный выпрямитель, использующий встроенную модель диода
Выберем для нашего примера D1 в качестве имени модели и D в качестве ее типа. Это необходимо, чтобы программа PSpice могла распознать устройство как диод встроенного типа. Проанализировать работу схемы можно с помощью следующего входного файла:
Half-Wave Rectifier Using Built-in Model
v1 1 0 sin(0 12V 1000Hz)
DA 1 2 D1
R 2 0 1k
.MODEL D1 D
.TRAN 0.1ms 1ms
.PROBE
.END
Обратите внимание на форму команды ввода диода:
DA 1 2 D1
Обозначение DA это выбранное нами имя диода. Оно всегда должно начинаться с D. Диод подключен к узлам 1 (анод) и 2 (катод). Запись D1 в конце строки задает имя модели диода.
Команда анализа переходных процессов .TRAN предусматривает вывод полного периода входного синусоидального напряжения и выходного напряжения на резисторе при частоте f =1 кГц.
Проведите анализ и получите в Probe график v(1) и v(2) для полного периода t =1мс. Убедитесь, что входное напряжение является синусоидальным, а выходное выпрямлено, и поэтому отрицательный полупериод отсутствует. На положительном полупериоде выходное напряжение отличается от входного на величину, равную падению напряжения на диоде. Используйте режим курсора, чтобы определить падение напряжения на диоде при максимуме входного напряжения. Убедитесь, что это падение напряжения равно 0,72 В. На рис. 9.2 показаны временные диаграммы входного и выходного напряжений.

Рис. 9.2. Входное и выходное напряжения в схеме на рис. 9.1
Листинг команды .MODEL может включать в себя и другие параметры. Например, кремниевые (Si) и германиевые (Ge) диоды имеют различные прямые падения напряжения и различные токи насыщения. Чтобы настроить модель диода, вы можете задавать до 14 параметров. Полный список этих параметров дан в разделе D — Диод приложения D.
Встроенная модель для диода
Чтобы увидеть характеристику для встроенной модели диода в PSpice, можно провести анализ с вариацией входного напряжения на постоянном токе (dc sweep). Схема показана на рис. 9.3. При этом мы будем получать выходное напряжение «точка за точкой», строя характеристику так же, как снимали бы ее в лаборатории. Входной файл будет выглядеть следующим образом:
Built-in Diode Model for PSpice
V 1 0 10V
R 1 2 100
D1 2 0 DMOD
.DC V -0.5V 10V 0.02V
.MODEL DMOD D
.PROBE
.END

Рис. 9.3. Схема для снятия ВАХ диода
В данном примере мы подключили между узлами 2 и 0 диод D1 с именем модели DMOD, что отражено в первом аргументе команды .MODEL.
При проведении анализа в Probe измените границы оси X так, чтобы можно было представить V(2) в диапазоне до 0,8 В и I(D1) в диапазоне до 50 мА. Это даст вам характеристику встроенного диода (рис. 9.4) без изменения ранее определенных параметров. Чтобы отразить специфику конкретного прибора, вы можете изменять модель диода. Например, высота потенциального барьера EG по умолчанию равна 1.1 эВ. Задав новое значение, равное 0,72 эВ, мы отразим в нашей модели параметр, характерный для германиевого (Ge) диода. Вы можете посмотреть, как изменилась характеристика прибора после изменения любого параметра, и после этого продолжить анализ схемы, пользуясь измененной моделью.

Рис. 9.4. BAX диода
Фильтрация выходного напряжения в однополупериодных выпрямителях
Сгладить выходное напряжение можно, включив конденсатор параллельно сопротивлению нагрузки, как показано на рис. 9.5. Чтобы не допустить существенного снижения выходного напряжения на интервале, когда диод не проводит, емкость конденсатора должна быть выбрана достаточно большой.

Рис. 9.5. Двухполупериодный выпрямитель с емкостным фильтром
Решим эту традиционную задачу при R L= 1 кОм и стандартной частоте промышленной или бытовой сети f =60 Гц. Емкость фильтрового конденсатора выберем равной С =25 мкФ. Входной файл:
Half-Wave Rectifier with Capacitor Filter
V 1 0 sin (0 12 60)
DA 1 2 D1
R 2 0 1k
N 2 0 25uF
.MODEL D1 D
.TRAN 0.1ms 33.33ms
.PROBE
.END
Проведите анализ и выберите диапазон времени от 0 до 25 мс. Получите графики v(1) и v(2). Обратите внимание, что выходное напряжение следует за входным так же, как в первом примере, только до момента, когда напряжения достигают максимума. Затем, поскольку конденсатор был заряжен до максимального напряжения, диод перестает проводить. При этом конденсатор разряжается по экспоненте до момента, когда входное напряжение станет достаточным, чтобы снова перевести диод в проводящее состояние. Подробно эти процессы отражены на рис. 9.6.

Рис. 9.6. Процессы в однополупериодном выпрямителе с идеальным диодом и емкостным фильтром
При расчете этой схемы обычно пренебрегают падением напряжения на диоде. Уравнение для максимального тока через диод при этом равно:

Убедитесь, что при заданных значениях параметров, оно дает I m =113,7 мА.
Ток изменяется согласно уравнению i = I m sin(ω t +θ), где θ определен как
θ = arctan ω CR L ,
а угол выключения равен
ω t 1= π – θ = 180° – θ,
где t 1— момент выключения диода.
Использование этих уравнений позволяет получить θ = 83,94° и
ω t 1= 96,06°.
Добавьте еще одну ось Y , получите график I(DA). Из графика на рис. 9.7 видно, что выключение происходит в момент t= 4,56 мс при величине угла ω t 1=98,5°. Убедитесь, что включение происходит в момент t 2=18,27 мс при ω t 2=34,8°.

Рис. 9.7. Временные диаграммы напряжений в схеме на на рис. 9.5
Максимальное значение выходного напряжения просто равно максимальному значению входного за вычетом падения напряжения на диоде. Это дает максимальное значение v(2)=11,23 В. Размах пульсаций выходного напряжения V r= 11,3–6,49=4,81 В. На рис 9.7 эти результаты представлены в графической форме.
Читать дальшеИнтервал:
Закладка: