Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
- Название:OrCAD PSpice. Анализ электрических цепей
- Автор:
- Жанр:
- Издательство:ДМК Пресс, Питер
- Год:2008
- Город:Москва, Санкт-Петербург
- ISBN:978-5-9706-0009-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей краткое содержание
Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.
На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.
OrCAD PSpice. Анализ электрических цепей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
.END

Рис. 8.14. Другая схема генератора на базе моста Вина с разомкнутой цепью обратной связи
Проведите анализ, как и в предыдущем примере, получите график
20·lg(V(Vi)/V(Vo)).
Используйте режим курсора, чтобы показать, что этот график достигает максимума при f =10 кГц. Чтобы проверить, что при этой частоте установятся колебания, получите график
VP(Vi) – VP(Vo),
и покажите, что сдвиг фазы при частоте 10 кГц равен -180°. Эти графики показаны на рис. 8.15.

Рис. 8.15. Амплитудно-частотная и фазочастотная характеристики для схемы на рис. 8.14
Генератор Колпитца
Чтобы описать генератор Колпитца или генератор Хартли, зачастую используется одна и та же схема (рис. 8.16), где Z 1, Z 2и Z 3представляют собой полные сопротивления. Условие установления колебаний при этом задается уравнением
Z 1+ Z 2+ Z 3= 0.

Рис. 8.16. Базовая схема для резонансных генераторов
В качестве полных сопротивлений обычно принимаются чисто реактивные сопротивления Х 1и Х 2одного типа и реактивное сопротивление Х 3противоположного типа. В генераторе Колпитца сопротивления Х 1и Х 2емкостного характера, а Х 3— индуктивного. Установим значения емкостей С 1= С 2=0,005 мкФ и значение индуктивности L =5 мГн.
Частота колебаний может быть найдена из уравнения

которое дает f 0=33.38 кГц. Схема для этого случая показана ранее на рис. 8.4. Параметры других компонентов: R =1 кОм, R 1=10 кОм и R 2=20 кОм.
Схема, имеющая разрыв для включения измерительной цепи, показана на рис. 8.17. Входной файл при этом приобретает вид:
Colpitts Oscillator
.subckt colpitts i i
x 2 1a 3 iop
vi 1a 0 0V
r1 i 2 10k
r2 2 3 20k
r 3 4 1k
c1 i 0 0.005uF
c2 4 0 0.05uF
L i 4 5mH
.ends
.subckt iop m p vo
rin m p 1E6
e vo 0 p m E5
.ends
X TVi TVo colpitts
V TVo TVi а.с 1
EVi Vi 0 0 TVi 1
R1 Vi 0 1E6
EVo Vo 0 TVo 0 1
R2 Vo 0 1E6
.ac DEC 1000 1kHz 100kHz
.PROBE
.END

Рис. 8.17. Измерительная цепь для генератора Колпитца
Выполните анализ и получите график, подобный показанному на рис. 8.18. Обратите внимание, что имеется точка резонанса при частоте f =33,3 кГц, которая близка к предсказанной частоте колебаний. Получите график фазового сдвига между входным и выходным напряжениями и проверьте, что сдвиг фазы достигает -180° при f =33,4 кГц.

Рис. 8.18. ЛАЧХ для схемы на рис. 8.17
Задачи
8.1. Генератор со сдвигом фазы, показанный на рис. 8.7, должен работать на частоте f =1 кГц. При С =1 мкФ, выберите необходимые значения компонентов и выполните анализ одним из методов, предложенных в тексте. Используя Probe, убедитесь, что схема работает в ожидаемом режиме. Распечатайте графики, полученные в программе Probe.
8.2. Используйте генератор на базе моста Вина, показанный на рис. 8.11, настроив его на рабочую частоту f =10 кГц. Сделайте необходимые изменения в приведенном в тексте главы входном файле и выполните анализ на PSpice при задании начального заряда С 1. Используя Probe, убедитесь, что схема может поддерживать колебания при данной частоте.
8.3. Создайте схему генератора Колпитца, способного работать на частоте f =100 кГц. В качестве модели используйте схему на рис. 8.4. Применив методику разомкнутой цепи обратной связи, покажите, что колебания будут поддерживаться на этой частоте, покажите также сдвиг фазы на этой частоте.
8.4. Для генератора Колпитца из задачи 8.3 замкните контур обратной связи, и используйте необходимый метод возбуждения колебаний, чтобы показать, что колебания происходят при частоте f 0=100 кГц. Получите графики синусоидальных колебаний с помощью программы Probe.
8.5. На базе общей конфигурации LС -генератора, приведенной на рис. 8.16, разработайте генератор Хартли, где Х 1и Х 2— катушки индуктивности, а Х 3— конденсатор, с такими параметрами, что f 0=50 кГц. Задайте L 1 =L 2 = 20 мГн, считая, что между катушками индуктивности не имеется магнитной связи. Используйте PSpice/Probe, чтобы проверить правильность решения.
8.6. Схема замещения генератора со сдвигом фаз на полевом транзисторе (FET) показана на рис. 8.19. Для возникновения устойчивых колебаний | А | должен быть не меньше 29, требуя FET с μ≥29. Приняв, что g m =5 мс, r d =500 кОм, С= 0,5 пФ, R= 1,3 кОм и R d= 10 кОм, используйте метод разомкнутой обратной связи, чтобы определить, произойдут ли колебания, и если да, то на какой частоте.

Рис. 8.19. Схема замещения генератора со сдвигом фаз на полевом транзисторе
9. Приборы в PSpice
В предыдущих главах мы создавали собственные линейные модели для переменных составляющих, входящие в традиционный набор, который обычно используется в классическом анализе. Такой подход дает простые и ясные результаты, поэтому его следует использовать всегда, когда только возможно.
Однако часто возникает необходимость в более сложных моделях, учитывающих характеристики конкретных приборов. Набор таких моделей для приборов различных типов предоставляет пользователю программа PSpice, что делает ее мощным исследовательским инструментом.
Однополупериодные выпрямители
Чтобы познакомить вас с концепцией использования встроенных моделей приборов, рассмотрим показанную на рис. 9.1 схему однополупериодного выпрямителя, состоящего из источника переменного напряжения, диода и резистора. Проблема здесь состоит в выборе модели диода. Мы могли бы моделировать диод как замкнутый ключ для положительных полупериодов входного напряжения и как разомкнутый ключ для отрицательных полупериодов. Если бы мы это сделали, то разделили бы проблему на две части, потому что в зависимости от режима должны были бы использовать два варианта модели. Однако нет никакой необходимости в таком подходе, поскольку PSpice имеет встроенную модель диода. Чтобы использовать ее, мы должны включить в наш входной файл команду .MODEL, которая имеет следующую форму:
Читать дальшеИнтервал:
Закладка: