Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект
- Название:Совместимость. Как контролировать искусственный интеллект
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9370-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект краткое содержание
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.
Совместимость. Как контролировать искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Тест Тьюринга бесполезен для ИИ, потому что это неформальное и чрезвычайно обусловленное определение: оно зависит от невероятно сложных и по большей части неизвестных характеристик человеческого ума, основывающихся на биологическом строении и культурном контексте. Невозможно «распаковать» это определение и на его основании создать машину, которая с высокой вероятностью пройдет тест. Вместо этого исследования ИИ сосредоточились на рациональном поведении согласно вышеописанному: машина интеллектуальна настолько, насколько вероятно, что ее действия приведут ее к тому, чего она хочет, при условии, что это желание было воспринято.
Сначала исследователи ИИ вслед за Аристотелем идентифицировали «то, что она хочет» как цель, которая либо достигается, либо нет. Такие цели могли возникать в мире игр, например в пятнашках, где целью является расположить все костяшки с числами по порядку от 1 до 15 в маленьком (смоделированном) квадратном лотке или же в реальном физическом окружении. В начале 1970-х гг. робот Shakey Стэнфордского исследовательского института в Калифорнии складывал большие блоки в желаемые конфигурации, а робот Freddy Эдинбургского университета собирал деревянную лодку из деталей. Вся эта работа выполнялась с использованием логических систем решения задач, направленных на составление и исполнение планов, гарантированно приводящих к успеху [53] Проект «Шейки» Стэнфордского исследовательского института описан в воспоминаниях одного из его руководителей: Nils Nilsson, «Shakey the robot», technical note 323 (SRI International, 1984). В 1969 г. был снят 24-минутный фильм «Шейки: эксперименты по обучению и планированию в робототехнике», вызвавший общенациональный интерес.
.
К 1980-м гг. стало очевидно, что одного только логического рассуждения недостаточно, потому что, как уже отмечалось, не существует плана, гарантирующего , что вы «попадете в аэропорт». Логика требует определенности, а реальный мир попросту ее не обеспечивает. Между тем американо-израильский специалист по компьютерным наукам Джуда Перл, впоследствии получивший премию Тьюринга 2011 г., работал над методами рассуждения в условиях неопределенности, основанными на теории вероятности [54] Книга, ознаменовавшая начало разработки современного, вероятностного ИИ: Judea Pearl , Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988).
. Все исследователи постепенно приняли идеи Перла; они вооружились инструментами теории вероятности и теории полезности, таким образом связав ИИ с другими областями знания: статистикой, теорией контроля, экономикой и исследованиями операций. Это изменение ознаменовало начало, в терминологии некоторых обозревателей, современного ИИ .
Центральным понятием современного ИИ является интеллектуальный агент — нечто способное воспринимать и действовать. Агент — это процесс, протекающий во времени, в том смысле, что поток воспринимаемых входных сигналов преобразуется в поток действий. Предположим, например, что рассматриваемый агент — беспилотное такси, везущее меня в аэропорт. Его входной сигнал может включать данные с восьми RGB-камер, делающих 30 кадров в секунду; кадр состоит из, допустим, 7,5 млн пикселей, каждый из которых имеет значение интенсивности изображения в каждом из трех цветовых каналов, что в сумме дает свыше 5 Гб в секунду. (Поток данных от 200 млн фоторецепторов сетчатки еще больше, что отчасти объясняет, почему зрением занимается такая большая часть человеческого мозга.) Такси также получает данные акселерометра 100 раз в секунду плюс данные GPS. Этот колоссальный поток первичной информации преобразуется прямо-таки гигантской вычислительной мощностью миллиардов транзисторов (или нейронов) в последовательное согласованное поведение по управлению автомобилем. Действия такси включают электронные сигналы, подаваемые на руль, тормоза и акселератор 20 раз в секунду. (У опытного водителя-человека вся эта колоссальная деятельность остается по большей части неосознанной: возможно, вы осознаете лишь принятие таких решений, как «обогнать этот медленный грузовик» или «остановиться на заправке», но ваши глаза, мозг, нервы и мышцы постоянно занимаются всей работой.) В случае шахматной программы входные данные — главным образом лишь показания таймера и время от времени уведомление о ходе противника и новом состоянии доски, тогда как действия состоят по большей части в том, чтобы не делать ничего, пока программа думает, и временами выбирать ход и уведомлять о нем противника. У личного цифрового ассистента вроде Siri или Cortana входные данные включают не только акустический сигнал с микрофона (получаемого 48 000 раз в секунду) и ввод тачскрина, но и содержание каждой интернет-страницы, к которой он получает доступ, тогда как действия охватывают речь и демонстрацию материала на экране.
Способ создания интеллектуального агента зависит от характера стоящей перед нами задачи. Это, в свою очередь, зависит от трех вещей: во-первых, от характера среды, в которой будет действовать агент (шахматная доска очень сильно отличается от переполненного шоссе или мобильного телефона); во-вторых, от наблюдений и действий, связывающих агента со средой (например, «Сири» может иметь или не иметь доступ к камере телефона, позволяющей ей видеть); в-третьих, от задачи агента (задача научить противника лучше играть в шахматы очень отличается от задачи выиграть матч).
Приведу лишь один пример того, как агент зависит от всего этого. Если поставлена задача выиграть данную партию, шахматная программа должна учитывать только текущее состояние доски и совершенно не нуждается в памяти о прошлых событиях [55] Строго говоря, шахматы не являются полностью наблюдаемыми. Программе все-таки приходится помнить небольшой объем информации, чтобы устанавливать допустимость рокировок и взятий на проходе и определять ничьи троекратным повторением позиции или правилом 50 ходов.
. Обучающая программа, напротив, должна постоянно обновлять свою модель того, какие нюансы игры в шахматы ученик понимает и какие не понимает, чтобы иметь возможность давать полезные советы. Иными словами, для обучающей программы ум ученика является релевантной частью среды. Более того, в отличие от доски, это та часть среды, которая недоступна для прямого наблюдения.
Характеристики задач, влияющие на конструкцию агента, требуют ответа на следующие вопросы [56] Полное описание см. в главе 2 кн.: Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach , 3rd ed. (Pearson, 2010).
:
• Является ли среда полностью наблюдаемой (как в шахматах, где ввод обеспечивает прямой доступ ко всем релевантным событиям текущего состояния среды) или частично наблюдаемой (как при управлении автомобилем, где поле зрения водителя ограничено, транспортные средства непрозрачны, а намерения других водителей неизвестны)?
Читать дальшеИнтервал:
Закладка: