Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект

Тут можно читать онлайн Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект - бесплатно ознакомительный отрывок. Жанр: Прочая околокомпьтерная литература, издательство Альпина нон-фикшн, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект краткое содержание

Совместимость. Как контролировать искусственный интеллект - описание и краткое содержание, автор Стюарт Рассел, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В массовом сознании сверхчеловеческий искусственный интеллект — технологическое цунами, угрожающее не только экономике и человеческим отношениям, но и самой цивилизации. Конфликт между людьми и машинами видится неотвратимым, а его исход предопределенным. Выдающийся исследователь ИИ Стюарт Рассел утверждает, что этого сценария можно избежать.
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.

Совместимость. Как контролировать искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок

Совместимость. Как контролировать искусственный интеллект - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стюарт Рассел
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Был также достигнут значительный прогресс в движении к ИИ общего назначения в исследовании распознавания рукописных цифр в 1990-х гг. Команда Яна Лекуна из AT&T Labs не писала специальные алгоритмы для распознавания «8» путем поиска изогнутых линий и петель, а усовершенствовала существующие алгоритмы обучения нейронных сетей, создав сверхточные нейросети . Эти сети, в свою очередь, продемонстрировали эффективное распознавание знаков после соответствующего обучения на категоризованных примерах. Те же алгоритмы могут научиться распознавать буквы, формы, стоп-сигналы, собак, кошек и полицейские автомобили. Под шапкой «глубокого обучения» они совершили переворот в распознавании речи и визуальных объектов. Они являются и одним из ключевых элементов AlphaZero, а также большинства сегодняшних проектов автомобилей с автопилотом.

Если задуматься об этом, не приходится удивляться, что приближение к универсальному ИИ происходит в проектах узкого ИИ, решающих конкретные задачи. Эти задачи дают исследователям какой-то материал для работы. (Поэтому никто не говорит: «Нужно просто смотреть в окно — так совершаются изобретения».) В то же время важно понимать, как далеко мы уже продвинулись и где проходят границы. Когда AlphaGo разбила Ли Седоля, а затем всех остальных лучших игроков в го, многие предположили, что, поскольку машина с нуля научилась побеждать человеческую расу в задаче, известной своей сложностью даже для высокоинтеллектуальных людей, это начало конца — главенствование над нами искусственного интеллекта лишь вопрос времени. Даже некоторые скептики могли сдаться, когда AlphaZero выиграла не только в го, но и в шахматы, и в сёги. Однако у AlphaZero жесткие ограничения: она работает только в классе дискретных, наблюдаемых игр для двух игроков с известными правилами. Этот подход попросту совершенно не сработает для вождения, преподавания, руководства правительством или захвата мира.

Вследствие четких ограничений возможностей машины, когда люди говорят, что «машинный IQ» быстро растет и грозит превзойти человеческий IQ, это нонсенс. Концепция IQ имеет смысл применительно к человеку, потому что способности людей обычно коррелируют в широком спектре умственной деятельности. Пытаться оценить IQ машины — все равно что пытаться заставить животное участвовать в человеческом десятиборье. Действительно, лошади могут быстро бегать и высоко прыгать, но сталкиваются с большими трудностями в прыжках с шестом и метании диска.

Цели и стандартная модель

Если рассматривать интеллектуального агента снаружи, то имеет значение только последовательность действий, которую он создает, исходя из получаемого им потока входных данных. При рассмотрении изнутри действия должны выбираться программой, заложенной в агента . Люди от рождения имеют, скажем так, одну агентскую программу, которая со временем заставляет их действовать с разумной мерой успешности при выполнении громадного круга задач. На сегодняшний день это не относится к ИИ: мы не знаем, как построить одну универсальную программу ИИ, которая делала бы все, и вместо этого создаем разные типы агентских программ для разных типов задач. Мне придется дать хотя бы минимальные объяснения того, как работают разные агентские программы. Более подробные объяснения вы найдете в приложениях в конце книги, адресованных тем, кому это будет интересно. (Ссылки на конкретные приложения даются верхними индексами, например здесь Аи здесь Г.) В центре внимания вопрос о том, как стандартная модель реализуется в этих разных типах агентов — иными словами, как ставится задача и как она транслируется агенту.

Самый простой способ сообщить о поставленной задаче — в форме цели . Когда вы садитесь в свою машину с автопилотом и нажимаете иконку «дом» на экране, бортовой компьютер принимает это как поставленную задачу, переходит к плану и осуществляет движение по маршруту. Состояние мира или соответствует цели (да, я дома), или не соответствует (нет, я не живу в аэропорту Сан-Франциско). В классический период исследования ИИ, до 1980-х гг., когда неопределенность стала главной проблемой, большинство исследований исходило из восприятия мира как полностью наблюдаемого и детерминистского, и цели имели смысл в качестве способа постановки задачи. Иногда имеется также функция издержек для оценки решений: оптимальным является то решение, которое минимизирует совокупные издержки при достижении цели. В случае автомобиля она может быть встроенной — например, издержки маршрута есть некая фиксированная комбинация времени и потребления топлива, — или же у человека может быть опция установления соотношения между этими двумя параметрами.

Ключом к выполнению таких задач является способность «мысленно моделировать» эффекты возможных действий, которая иногда называется опережающим поиском . Ваша машина с автопилотом имеет внутреннюю карту и знает, что если ехать на восток от Сан-Франциско по Бэй-бридж, то попадешь в Окленд. Алгоритмы, восходящие к 1960-м гг. [60] Оптимальные маршруты определяются с помощью А алгоритма и множества производных от него: Peter Hart, Nils Nilsson, and Bertram Raphael, «A formal basis for the heuristic determination of minimum cost paths », IEEE Transactions on Systems Science and Cybernetics SSC- 4 (1968): 100–107. , находят оптимальные маршруты, заглядывая вперед и ведя поиск среди многих возможных последовательностей действий А. Эти алгоритмы являются повсеместным элементом современной инфраструктуры: они дают нам не только указания, куда ехать, но и решения в области авиапутешествий, роботизированной сборки, организации строительства и логистики в сфере доставки. С некоторыми модификациями по нейтрализации нежелательного поведения противников та же идея опережающего изучения используется в играх, таких как крестики-нолики, шахматы и го, целью которых является выигрыш в соответствии с конкретным определением этого понятия в данной игре.

Алгоритмы опережающего поиска чрезвычайно эффективны для своих специфических задач, но не отличаются гибкостью. Например, AlphaGo «знает» правила го, но только в том смысле, что имеет две подпрограммы, написанные на традиционном языке программирования наподобие С++: одна подпрограмма генерирует все возможные допустимые шаги, другая кодирует цель, определяя, является ли данное состояние выигрышем или проигрышем. Чтобы AlphaGo сыграла в другую игру, кто-то должен переписать ее код на С++. Более того, если вы задаете новую цель, скажем, посетить экзопланету на орбите Проксимы Центавра, она станет исследовать миллиарды последовательностей ходов в го в бесплодной попытке найти ту последовательность, которая приведет к достижению цели. Она не может заглянуть внутрь кода на С++ и понять очевидное: никакая последовательность шагов го не доставит вас на Проксиму Центавра. Знание AlphaGo, в сущности, заперто внутри «черного ящика».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стюарт Рассел читать все книги автора по порядку

Стюарт Рассел - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Совместимость. Как контролировать искусственный интеллект отзывы


Отзывы читателей о книге Совместимость. Как контролировать искусственный интеллект, автор: Стюарт Рассел. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x